Пусть известны вероятности этих гипотез и условные вероятности события А. Требуется найти вероятность события .

Теорема. Вероятность события , которое может наступить лишь при условии осуществления одного из несовместных событий , образующих полную группу событий , равна сумме произведений вероятностей каждой из этих гипотез на соответствующую условную вероятность события : .

Данную формулу называют формулой полной вероятности.

Формула Бейеса

Пусть событие может наступить при условии осуществления одного из несовместных событий (гипотез ) , образующих полную группу событий. Пусть вероятности известны до опыта. Производится опыт, в результате которого осуществляется событие . Требуется переоценить вероятности гипотез при условии, что событие уже произошло. Переоценка вероятностей гипотез может быть осуществлена по формуле проверки гипотез (формуле Бейеса):

Таким образом, вероятность гипотезы после опыта равна дроби, числителем которой является произведение вероятности этой гипотезы до опыта на вероятность события по этой гипотезе, а знаменателем – сумма таких же произведений для всех возможных в данном случае гипотез (или полная вероятность события ).

Повторные независимые испытания. Формула Бернулли

Пусть производится независимых повторных испытаний, в каждом из которых событие имеет одну и ту же вероятность , не завися­щую от номера испытания (вероятность события , противоположного событию , также постоянна и равна ).

Требуется найти вероятность того, что в испытаниях событие произойдёт ровно раз.

Данная задача решается с помощью формулы Бернулли:

Эту формулу называют также формулой биномиального распределения, так как её правая часть представляет собой общий член разложения бинома Ньютона.

При большом числе испытаний вычисление по формуле Бернулли сопряжено с громоздкостью вычислений. Чтобы избежать этих затруднений, целесообразно использовать формулы, позволяющие приближённо определять вероятности , ,,, с которыми происходит событие .

Локальная теорема Лапласа

Теорема. Вероятность того, что в независимых испытаниях, в каждом из которых вероятность осуществления события постоянна и равна p, событие наступит ровно раз, приближённо равна (тем точнее, чем больше ):

, где , .

Таблица для положительных значений функции Гаусса приведена в Приложение 1 данного пособия. Поскольку функция – чётная, т. е. , то для отрицательных значений аргумента пользуются этой же таблицей.

Интегральная теорема Лапласа

Довольно часто требуется найти вероятность того, что в условиях схемы Бернулли событие , имеющее постоянную вероятность, при испытаниях появляется не менее раз и не более раз.

Данная вероятность может быть найдена с помощью интегральной теоремы Лапласа.

Теорема. Вероятность того, что в независимых испытаниях, в каждом из которых вероятность осуществления события постоянна и равна , событие наступит не менее раз и не более раз приближённо равна:

,

здесь  – стандартный интеграл вероятностей (функция Лапласа),

, .

Таблица для неотрицательных значений функции Лапласа приведена в Приложении 5 данного пособия. Полагают, что для значений .

Если , то используют таблицу Приложение 2 с учётом того, что функция Лапласа есть функция нечётная, т. е. .

Закон Пуассона – закон редких событий

Пусть требуется найти вероятность того, что при очень большом числе испытаний, в каждом из которых вероятность осуществления события очень мала, событие наступит ровно раз.

В этом случае ни формула Бернулли, ни асимптотическая формула Лапласа не могут быть практически использованы для решения поставленной задачи.

При больших , малых и если выполняется условие , то для вычисления искомой вероятности применяют формулу Пуассона (закон Пуассона):

, где .

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Основные порталы (построено редакторами)

Домашний очаг

ДомДачаСадоводствоДетиАктивность ребенкаИгрыКрасотаЖенщины(Беременность)СемьяХобби
Здоровье: • АнатомияБолезниВредные привычкиДиагностикаНародная медицинаПервая помощьПитаниеФармацевтика
История: СССРИстория РоссииРоссийская Империя
Окружающий мир: Животный мирДомашние животныеНасекомыеРастенияПриродаКатаклизмыКосмосКлиматСтихийные бедствия

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организации
МуниципалитетыРайоныОбразованияПрограммы
Отчеты: • по упоминаниямДокументная базаЦенные бумаги
Положения: • Финансовые документы
Постановления: • Рубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датам
Регламенты
Термины: • Научная терминологияФинансоваяЭкономическая
Время: • Даты2015 год2016 год
Документы в финансовой сферев инвестиционнойФинансовые документы - программы

Техника

АвиацияАвтоВычислительная техникаОборудование(Электрооборудование)РадиоТехнологии(Аудио-видео)(Компьютеры)

Общество

БезопасностьГражданские права и свободыИскусство(Музыка)Культура(Этика)Мировые именаПолитика(Геополитика)(Идеологические конфликты)ВластьЗаговоры и переворотыГражданская позицияМиграцияРелигии и верования(Конфессии)ХристианствоМифологияРазвлеченияМасс МедиаСпорт (Боевые искусства)ТранспортТуризм
Войны и конфликты: АрмияВоенная техникаЗвания и награды

Образование и наука

Наука: Контрольные работыНаучно-технический прогрессПедагогикаРабочие программыФакультетыМетодические рекомендацииШколаПрофессиональное образованиеМотивация учащихся
Предметы: БиологияГеографияГеологияИсторияЛитератураЛитературные жанрыЛитературные героиМатематикаМедицинаМузыкаПравоЖилищное правоЗемельное правоУголовное правоКодексыПсихология (Логика) • Русский языкСоциологияФизикаФилологияФилософияХимияЮриспруденция

Мир

Регионы: АзияАмерикаАфрикаЕвропаПрибалтикаЕвропейская политикаОкеанияГорода мира
Россия: • МоскваКавказ
Регионы РоссииПрограммы регионовЭкономика

Бизнес и финансы

Бизнес: • БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумаги: • УправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги - контрольЦенные бумаги - оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудит
Промышленность: • МеталлургияНефтьСельское хозяйствоЭнергетика
СтроительствоАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством