Министерство образования Российской Федерации
Владивостокский государственный университет
экономики и сервиса
___________________________________________
Е. Ф. ЧУБЕНКО
Г. Л. ОВСЯННИКОВА
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА
Часть 1
Учебное пособие
Владивосток
Издательство ВГУЭС
2003
ББК 22.21
Ч 81
Рецензент , канд. техн. наук, профессор каф. ФХ и ПМ ВГУЭС
,
Ч 81 ТЕОРЕТИЧЕСКАЯ МЕХАНИКА: Учебное пособие. Ч. 1. – Владивосток: Изд-во ВГУЭС, 2003 – 128с.
Учебное пособие представляет собой комплекс, содержащий основные сведения о теории, необходимые для самостоятельного решения задач. В каждом разделе даны рекомендации о последовательности решения различных типов задач и приведены подробные методические указания к решению подобных задач. Может использоваться как теоретическая часть при подготовке к сдаче экзамена или зачета, так и в качестве методических указаний к решению задач на практических занятиях, при выполнении контрольных работ заочниками и расчётно-графических заданий.
Для студентов всех форм обучения.
ББК 22.21
ã Издательство Владивостокского
государственного университета
экономики и сервиса, 2003
Глава 1. ПЛОСКАЯ СИСТЕМА СХОДЯЩИХСЯ СИЛ
§ 1. Сложение двух сходящихся сил
Если в одной точке к телу приложены две силы под углом друг к другу, то их сложение выполняется по правилу параллелограмма.
Модуль равнодействующей R может быть определен аналитически из треугольника АВС с помощью теоремы косинусов (рис. 1):

так как
.
Направление равнодействующей определяется углами
и
, которые можно рассчитать, применив теорему синусов. Для треугольника ABC
, (1)
откуда, учитывая, что
, получим
,
. (2)
Вместо параллелограмма сил можно строить силовой треугольник (рис. 2). Выбрав любую точку на плоскости рисунка, проводят из нее, сохраняя масштаб, вектор, равный и параллельный одной из заданных сил, например F1.


Рис. 1 Рис. 2
Из конца вектора F1 проводят вектор, равный и параллельный второй силе, F2. Начало первого вектора соединяют с концом второго, замыкая треугольник. Замыкающая сторона треугольника в данном масштабе представляет собой искомую равнодействующую. Модуль и направление равнодействующей определяют аналитически, как было показано выше.
При построении треугольника сил необходимо придерживаться правила: стрелки составляющих векторов направлены в одну сторону, а равнодействующей – им навстречу.
Частные случаи: 1) если
, т. е. силы действуют по одной прямой в одну строну, то
;
2) если , т. е. силы действуют по одной прямой в разные стороны, то
;
3) если
, то 
Заметим, что определение равнодействующей двух сил по правилу параллелограмма или треугольника называется векторным, или геометрическим, сложением.
Задача 1. Определить равнодействующую двух сил
и , модули которых соответственно равны Р1 = 40 Н и Р2 = 80 Н; сила
направлена горизонтально вправо, а образует с
угол a = 120° (рис. 3, а).

Рис. 3
Задачу можно решить графоаналитическим методом, используя либо правило параллелограмма, либо правило треугольника.
Решение 1 – по правилу параллелограмма:
1. Используя условие задачи и приблизительно соблюдая масштаб, изображаем параллелограмм ABCD (рис. 3, б). Порядок построения такой: из точки А проводим отрезок , затем из той же точки А под углом 120° к отрезку АВ проводим отрезок , из точек В и С проводим прямые BD || АС и CD || AB и, наконец, проводим диагональ
2. Используя формулу (1), можем найти модуль равнодействующей:

Имея в виду, что cos120° = – sin 30° = – 0,5, получаем
Н.
3. Применяя к D ABD (или к D ACD) (см. рис. 3, б) теорему синусов, получаем
,
откуда
и
,
; 
Таким образом, вектор равнодействующей
перпендикулярен к силе ,
Угол j2 можно найти либо как разность
![]()
либо из теоремы синусов:
и j2 = 30°.
Один и тот же результат, полученный различными путями, подтверждает правильность решения задачи.
Ответ. Равнодействующая данных сил равна 69,3 Н и линия ее действия образует с направлением силы
прямой угол.
Решение 2 – по правилу треугольника.
1. Используя условие задачи, строим треугольник сил ABC (рис. 3, в). Порядок построения такой: из точки А проведем отрезок
. Затем из точки В под углом a = 120° к направлению
проводим отрезок
и, наконец, «замкнем» треугольник отрезком АС, который изобразит искомую равнодействующую ![]()
В получившемся треугольнике

2. Применяем к треугольнику ABC известную из тригонометрии теорему косинусов:

откуда модуль равнодействующей
Н.
3. Углы j1 и j2, определяющие направление равнодействующей относительно заданных сил, находим, как и в первом решении, по теореме синусов.
§ 2. Разложение силы на две сходящиеся составляющие
Любую силу можно рассмотреть как равнодействующую двух произвольных, сходящихся под углом сил. Модуль и направление составляющих сил зависят от угла между ними. Можно построить множество параллелограммов, для которых данная сила R будет служить диагональю (рис. 4). Чтобы задача стала определенной, нужно знать одно из дополнительных условий: модули обеих составляющих, модуль и направление одной из составляющих, направление обеих составляющих, модуль одной из составляющих и направление другой.

Рис. 4 Рис. 5
Каждую из задач можно решить двумя способами: графическим и графоаналитическим.
При графическом решении задачи заданную силу откладывают на чертеже в выбранном масштабе, а затем производят несложные геометрические построения в зависимости от заданных условий.
Для графоаналитического решения нет надобности соблюдать масштаб, но при построении нужно сохранять примерное направление сил. Модули составляющих сил либо углы, определяющие их направление, вычисляют, пользуясь формулами (1) и (2).
Например, если заданы только направления составляющих сил, то из точки А вектора R (рис. 5) проводим линии действия составляющих AM и AN под известными углами
и
Затем из точки В проводим прямые, параллельные этим линиям, т. е. строим параллелограмм, в котором стороны АС и AD представляют собой искомые силы F1 и F2 в данном масштабе.
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |



