Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения.

Вариант 29

А). Сколько перестановок можно получить из букв слова КУЧЕР?
Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов?

А). Сколько перестановок можно получить из цифр числа 19438452919?
Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов?

Из букв слова ПИОНЕР составляются пятибуквенные слова.
А).Сколько таких слов можно получить?
Б) Сколько таких слов начинается с буквы П?
В) А если слова содержат не менее 5 букв?

Решить уравнение

5.   

На рисунке приведена схема электрической цепи. События: ={элемент k работает}; С={ в цепи нет разрыва}. Выразить события и через события и .

В конкурсе мисс ИжГТУ участвовало 13 девушек. Среди них было 6 блондинок и 7 брюнеток. Первокурсник ИВТ факультета пригласил в кино их всех, но пришли только 5 девушек. Найти вероятность того, что первокурсник смотрел кино а) 5 блондинками ; б) двумя блондинками и тремя брюнетками. На отрезок АВ длиной 15 см наугад ставят точку М. Найдите вероятность того, что площадь квадрата, построенного на отрезке АМ, будет заключена между 36 см2 и 81 см2. В специализированную больницу поступают в среднем 50% больных с заболеванием А, 30% — с заболеванием В, 20% — с заболеванием С. Вероятность полного излечения болезни А равна 0,7; для болезней В и С эти вероятности соответственно равны 0,8 и 0,9. Больной, поступивший в больницу, был выписан здоровым. Найдите вероятность того, что этот больной страдал заболеванием В. Игральная кость подбрасывается 8 раз. Найти вероятность того, что а) шестерка выпадет 4 раза; б) шестерка выпадет более четырех раз; в) шестерка выпадет не более шести раз. Аппаратура содержит 2000 одинаковых надежных элементов, вероятность отказа для каждого из которых равна 0,0005. Какова вероятность отказа аппаратуры, если он наступает при отказе хотя бы одного из элементов? Фирма раскладывает листовки с рекламой своего товара по почтовым ящикам. Вероятность того, что реклама сработает и обладатель такой листовки пойдет в магазин и купит товар равна 0,001. Фирма распространила 500 листовок. Найти вероятность того, что пойдут покупать товар этой фирмы а) 25 человек; б) от 200 до 250 человек. Дан ряд распределения случайной величины Х.
а)Найти значение *;
б) изобразить полигон распределения;
в) найти и изобразить графически функцию распределения;
г )найти вероятность того, что случайная величина Х примет значение в интервале
[3,5; 7,5);
д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5);
е) найти математическое ожидание случайной величины Х;
ж) найти дисперсию случайной величины Х;

xi

-1

2

3

4

pi

0,4

*

0,1

0,15

Даны законы распределения двух случайных величин Х и Y:
Найти закон распределения случайных величин а )Z=X+Y; б)U=XY.

xi

-4

-1

0

2

pi

0,2

0,4

0,3

0,1

yi

-1

-1

2

4

pi

0,1

0,2

0,1

0,6

Случайная величина Х задана функцией плотности распределения

Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения.

Вариант 30

1.  А). Сколько перестановок можно получить из букв слова ЗЕНИТ?
Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов?

2.  А). Сколько перестановок можно получить из цифр числа 17364735627?
Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов?

3.  Из букв слова ПАРОДИЯ составляются пятибуквенные слова.
А).Сколько таких слов можно получить?
Б) Сколько таких слов начинается с буквы П?
В) А если слова содержат не менее 5 букв?

4.  Решить уравнение

5.   

На рисунке приведена схема электрической цепи. События: ={элемент k работает}; С={ в цепи нет разрыва}. Выразить события и через события и .

6.   

У одной одинокой бабушки было 15 кошек. Среди которых были 8 короткошерстных и 7 длинношерстных. На 8 марта одинокая бабушка решила подарить 7 кошечек соседям. Выбирала она их случайным образом. Найти вероятность того, что среди подарочков а) ровно 4 кошки были длинношерстные; б) длинношерстных кошек было не менее четырех.

7.  Плоскость разграфлена параллельными прямыми, находящимися на расстоянии 3а друг от друга. На плоскость наудачу брошена монета радиуса г<a. найти вероятность того, что монета не пересечет ни одной из прямых.

8.  В сборной ИжГТУ по футболу 7 игроков с «ИВТ» факультета, 8 – с «ТТ», 6 – с
«РиДа» и 4 – с МиМ факультета. Статистикой установлено, что вероятность забить гол в играх сборной для студента «ИВТ» факультета составляет 0,5, для студента «ТТ» факультета 0,4, для «РиДовца» 0,35 и для «МиМовца» 0,3. В матче футболистами забито 2 гола. Какова вероятность того, что один гол забил представитель «ИВТ» факультета, другой – представитель МиМ факультета?

9.  Монету подбрасывают 10 раз. Какова вероятность того, что герб выпадет: а) четыре раза; б) не менее четырех раз; в) не более 8 раз.

10.  По данным ОТК в среднем 3% изделий требуют дополнительной регулировки. Вычислите вероятность того, что из 200 изделий 4 потребуют дополнительной регулировки.

11.  В цехе имеется 90 станков, работающих независимо друг от друга. Для каждого станка вероятность быть включенным равна 0,9. Вычислите вероятность того, что в некоторый момент времени выключенными окажутся а) ровно 50 станков; б) от 60 до 75 станков.

12.  Дан ряд распределения случайной величины Х.
а)Найти значение *;
б) изобразить полигон распределения;
в) найти и изобразить графически функцию распределения;
г )найти вероятность того, что случайная величина Х примет значение в интервале
[3,5; 7,5);
д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5);
е) найти математическое ожидание случайной величины Х;
ж) найти дисперсию случайной величины Х;

xi

-2

1

3

4

pi

0,4

0,25

0,1

*

13.  Даны законы распределения двух случайных величин Х и Y:
Найти закон распределения случайных величин а )Z=X+Y; б)U=XY.

xi

0

1

2

4

pi

0,1

0,1

0,3

0,5

yi

-2

0

2

4

pi

0,1

0,2

0,1

0,6

14.  Случайная величина Х задана функцией плотности распределения

Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения.

ПРИЛОЖЕНИЕ I

Таблица значений функции

ПРИЛОЖЕНИЕ II

Таблица значений функции Лапласа

http://www.toehelp.ru/theory/ter_ver/pril/table_2/eqn1.gif

ПРИЛОЖЕНИЕ III

Таблица значений функции Пуассона

Литература

Основная литература

1. Гмурман к решению задач по теории вероятностей и математической статистике: Учеб. пособие для студентов вузов. Изд 4-е, стер. – М.: Высш. шк., 2008. – 400 с.

2. , , Кожевникова математика в упражнения и задачах. В 2-х ч. Ч. II: Учеб. пособие для втузов. – 5-е изд., испр. – М.: Высш. шк., 2007. – 416 с.

3. Гмурман вероятностей и математическая статистика: Учеб. пособие для вузов. Изд 6-е, стер. – М.: Высш. шк., 2008. – 479 с.

4. , , Савельева высшей математики для экономических вузов. В 2-х частях. Ч. II. Теория вероятностей и математическая статистика. Линейное программирование. –М.: Высшая школа, 2002.

Дополнительная литература

5. , Семендяев по математике для инженеров и учащихся ВТУЗов. - М.: Наука, 2006.

6. Вентцель вероятностей: Учеб. для вузов. – 5-е изд. стер. – М.: Высш. шк., 2005. – 576 с.

7. Колде по теории вероятностей и математической статистике: Учебное пособие для техникумов. – М.: Высшая школа, 2001. – 157 с.

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18