Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения.

Вариант 19

А). Сколько перестановок можно получить из букв слова ПРОБКА?
Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов?

А). Сколько перестановок можно получить из цифр числа 4756473847?
Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов?

Из букв слова ПРАВИЛО составляются пятибуквенные слова.
А).Сколько таких слов можно получить?
Б) Сколько таких слов начинается с буквы П?
В) А если слова содержат не менее 5 букв?

Решить уравнение

На рисунке приведена схема электрической цепи. События: ={элемент k работает}; С={ в цепи нет разрыва}. Выразить события и через события и .

В конкурсе мисс ИжГТУ участвовало 15 девушек. Среди них было 8 блондинок и 7 брюнеток. Первокурсник ИВТ факультета пригласил в кино их всех, но пришли только 5 девушек. Найти вероятность того, что первокурсник смотрел кино а) 5 блондинками ; б) двумя блондинками и тремя брюнетками. Внутрь круглого озера радиуса R вписан остров, формой которого является правильный треугольник. Найти вероятность того, что парашютист, выброшенный над озером, упадет в воду. Из 2 близнецов первым родился мальчик. Какова вероят­ность, что вторым родится девочка, если среди близнецов вероятность рождения 2 мальчиков и 2 девочек соответственно равна 0.6 и 0.4, а для разнополых близнецов вероятность родиться первым для обоих полов одинакова? Игральная кость подбрасывается 9 раз. Найти вероятность того, что а) шестерка выпадет 3 раза; б) шестерка выпадет более трех раз; в) шестерка выпадет не более семи раз. Среди семян ржи 0,4% семян сорняков. Какова вероятность при случайном отборе 500 семян обнаружить 5 семян сорняков? 19) При штамповке металлических клемм получается в среднем 90% годных. Найдите вероятность того, что среди 900 клемм окажется от 700 до 820 годных. Дан ряд распределения случайной величины Х.
а)Найти значение *;
б) изобразить полигон распределения;
в) найти и изобразить графически функцию распределения;
г )найти вероятность того, что случайная величина Х примет значение в интервале
[3,5; 7,5);
д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5);
е) найти математическое ожидание случайной величины Х;
ж) найти дисперсию случайной величины Х;

xi

2

4

6

7

pi

0,4

0,3

0,1

*

Даны законы распределения двух случайных величин Х и Y:
Найти закон распределения случайных величин а )Z=X+Y; б)U=XY.

xi

-2

0

1

2

pi

0,2

0,1

0,2

0,5

yi

-1

0

2

4

pi

0,2

0,2

0,5

0,1

Случайная величина Х задана функцией плотности распределения  

Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения.

Вариант 20

А). Сколько перестановок можно получить из букв слова ПРИЮТ?
Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов?

А). Сколько перестановок можно получить из цифр числа 2847563473?
Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов?

Из букв слова ПОХЛЕБКА составляются пятибуквенные слова.
А).Сколько таких слов можно получить?
Б) Сколько таких слов начинается с буквы П?
В) А если слова содержат не менее 5 букв?

Решить уравнение .

5.   

На рисунке приведена схема электрической цепи. События: ={элемент k работает}; С={ в цепи нет разрыва}. Выразить события и через события и .

У одной одинокой бабушки было 13 кошек. Среди которых были 6 короткошерстных и 7 длинношерстных. На 8 марта одинокая бабушка решила подарить 6 кошечек соседям. Выбирала она их случайным образом. Найти вероятность того, что среди подарочков а) ровно 4 кошки были длинношерстные; б) длинношерстных кошек было не менее четырех. Королева Елизавета велела белошвейке вышить на ленте длины а две розы. Найти вероятность того, что расстояние между розами окажется меньше а/2. Число грузовых автомашин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых машин, проезжающих по шоссе, как 3 : 2. Вероятность того, что будет заправляться грузовая машина, равна 0,1; для легковой машины эта вероятность равна 0,2. К бензоколонке подъехала машина. Найти вероятность того, что это грузовая машина. Монету подбрасывают 9 раз. Какова вероятность того, что герб выпадет: а) три раза; б) не менее трех раз; в) более 6 раз. Устройство состоит из 1000 элементов, работавших независимо один от другого. Вероятность отказа каждого из них в течение времени t равна 0,0025. Найдите вероятность того, что за время t откажут ровно 3 элемента. Вероятность случайным образом отобранному изделию оказаться стандартным равна 0,8. Найдите вероятность того, что среди 300 взятых наугад изделий а) 180 окажутся стандартными; б) Стандартными окажутся от 155 до 200 изделий. Дан ряд распределения случайной величины Х.
а)Найти значение *;
б) изобразить полигон распределения;
в) найти и изобразить графически функцию распределения;
г )найти вероятность того, что случайная величина Х примет значение в интервале
[3,5; 7,5);
д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5);
е) найти математическое ожидание случайной величины Х;
ж) найти дисперсию случайной величины Х;

xi

0

1

3

5

pi

0,1

0,3

0,1

*

Даны законы распределения двух случайных величин Х и Y:
Найти закон распределения случайных величин а )Z=X+Y; б)U=XY.

xi

0

1

2

4

pi

0,1

0,1

0,3

0,5

yi

-2

0

2

4

pi

0,1

0,2

0,1

0,6

Случайная величина Х задана функцией плотности распределения  

Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения.

Вариант 21

А). Сколько перестановок можно получить из букв слова ОРХИДЕЯ?
Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов?

А). Сколько перестановок можно получить из цифр числа 4756349845?
Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов?

Из букв слова ПОЧИНКА составляются пятибуквенные слова.
А).Сколько таких слов можно получить?
Б) Сколько таких слов начинается с буквы П?
В) А если слова содержат не менее 5 букв?

Овал: 1Решить уравнение

5.   

На рисунке приведена схема электрической цепи. События: ={элемент k работает}; С={ в цепи нет разрыва}. Выразить события и через события и .

В ящике содержится 10 лампочек, среди которых 3 лампы по 60 ватт, а остальные по 100 ватт. Определить вероятность того, что среди наудачу отобранных 6 лампочек окажется а) ровно две 60 ваттные лампы; б) не более двух 60 ваттных ламп. Улитка переползает тропинку за 6 минут. Какова вероятность того, что улитка заметит ползущего по тропинке жука, если она может это сделать лишь в том случае, когда жук находится не более чем в двух минутах до пересечения курса улитки, или не более чем в двух минутах после пересечения жуком курса улитки.
Курс жука перпендикулярен курсу улитки. В специализированную больницу поступают в среднем 50% больных с заболеванием А, 30% — с заболеванием В, 20% — с заболеванием С. Вероятность полного излечения болезни А равна 0,7; для болезней В и С эти вероятности соответственно равны 0,8 и 0,9. Больной, поступивший в больницу, был выписан здоровым. Найдите вероятность того, что этот больной страдал заболеванием А. Транзисторный радиоприемник смонтирован на 6 полупроводниках, для которых вероятность брака равна 0,1. приемник отказывает при наличии не менее двух бракованных полупроводников. Найти вероятность того, что: а) откажут ровно 5 полупроводников; б) приемник будет работать; в) приемник откажет. Пусть вероятность того, что пассажир опоздает к отправлению поезда, равна 0,02. Найдите число наиболее вероятное число опоздавших из 855 пассажиров. Какова вероятность того, что опоздает меньше 5 пассажиров? В цехе имеется 90 станков, работающих независимо друг от друга. Для каждого станка вероятность быть включенным равна 0,9. Вычислите вероятность того, что в некоторый момент времени включенными окажутся а) ровно 50 станков; б) от 60 до 75 станков. Дан ряд распределения случайной величины Х.
а)Найти значение *;
б) изобразить полигон распределения;
в) найти и изобразить графически функцию распределения;
г )найти вероятность того, что случайная величина Х примет значение в интервале
[3,5; 7,5);
д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5);
е) найти математическое ожидание случайной величины Х;
ж) найти дисперсию случайной величины Х;

xi

-2

1

3

4

pi

0,4

0,2

0,1

*

Даны законы распределения двух случайных величин Х и Y:
Найти закон распределения случайных величин а )Z=X+Y; б)U=XY.

xi

-4

0

1

2

pi

0,2

0,1

0,2

0,5

yi

-1

0

2

4

pi

0,2

0,2

0,5

0,1

Случайная величина Х задана функцией плотности распределения

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18