Вариант 11

А). Сколько перестановок можно получить из букв слова ДОСУГ ?
Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов?

А). Сколько перестановок можно получить из цифр числа 586758475?
Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов?

Из букв слова ПРИКЛАД составляются пятибуквенные слова.
А).Сколько таких слов можно получить?
Б) Сколько таких слов начинается с буквы П?
В) А если слова содержат не менее 5 букв?

Решить уравнение

5.   

На рисунке приведена схема электрической цепи. События: ={элемент k работает}; С={ в цепи нет разрыва}. Выразить события и через события и .

В ящике содержится 10 деталей, среди которых 4 нестандартные. Определить вероятность того, что в наудачу отобранных 6 деталях окажется а) ровно две нестандартные; б) не более двух нестандартных. На отрезке длиной а наудачу ставится 2 точки, в результате чего отрезок оказывается разделенным на три части. Определить вероятность того, что из трех получившихся частей отрезка можно построить треугольник. Из 5 стрелков 2 попадают в цель с вероятностью 0,6 и 3 — с вероятностью 0,4. а) Что вероятнее: попадет в цель наудачу вы­бранный стрелок или нет? б) Наудачу выбранный стрелок попал в цель. Что вероятнее: принадлежит он к первым двум или к трем последним? Транзисторный радиоприемник смонтирован на 10 полупроводниках, для которых вероятность брака равна 1/4. приемник отказывает при наличии не менее трех бракованных полупроводников. Найти вероятность того, что: а) откажут ровно 4 полупроводника; б) приемник будет работать; в) приемник откажет. Устройство состоит из 1500 элементов, работающих независимо один от другого. Вероятность отказа каждого из них в течение времени t равна 0,0017. Найдите вероятность того, что за время t откажут от 2 до 4 элементов. Из большой партии продукции, содержащей 70% изделий первого сорта, наугад отбирают 100 изделий. Вычислите вероятность того, что среди отобранных будет а) ровно 80 изделий 1 сорта; б) не менее 50 и не более 90 изделий первого сорта. Дан ряд распределения случайной величины Х.
а)Найти значение *;
б) изобразить полигон распределения;
в) найти и изобразить графически функцию распределения;
г )найти вероятность того, что случайная величина Х примет значение в интервале
[3,5; 7,5);
д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5);
е) найти математическое ожидание случайной величины Х;
ж) найти дисперсию случайной величины Х;

xi

-1

2

3

4

pi

0,4

*

0,1

0,15

Даны законы распределения двух случайных величин Х и Y:
Найти закон распределения случайных величин а )Z=X-4Y; б)U=XY

xi

-4

0

1

2

pi

0,2

0,1

0,2

0,5

yi

-1

0

2

4

pi

0,2

0,2

0,5

0,1

Случайная величина Х задана функцией плотности распределения

Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения.

Вариант 12

А). Сколько перестановок можно получить из букв слова ДЯТЕЛ?
Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов?

А). Сколько перестановок можно получить из цифр числа 284757438 ?
Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов?

Из букв слова ПРИВОЗ составляются пятибуквенные слова.
А).Сколько таких слов можно получить?
Б) Сколько таких слов начинается с буквы П?
В) А если слова содержат не менее 5 букв?

Решить уравнение

5.   

На рисунке приведена схема электрической цепи. События: ={элемент k работает}; С={ в цепи нет разрыва}. Выразить события и через события и .

Среди двенадцати билетов выигрышными являются четыре. Определить вероятность того, что среди взятых наудачу пяти билетов окажется а)три выигрышных; б) не более трех выигрышных. На отрезке АВ длиной а наудачу поставлены две точки С и Д. найти вероятность того, что точка С будет ближе к точке Д, чем к А. На 3 дочерей — Машу, Дашу и Елену — в семье возложена обязанность мыть посуду. Поскольку Маша старшая, ей приходится выполнять 40% всей работы. Остальные 60% работы Даша и Елена делят поровну. Когда Маша моет посуду, ве­роятность для нее разбить по крайней мере одну тарелку равна 0,02. Для Даши и Елены эта вероятность равна соответственно 0,03 и 0,04. Родители не знают, кто мыл посуду вечером, но они слышали звон разбитой тарелки. Какова вероятность того, что посуду мыла Даша? Радиоэлектронный комплекс самолета-бомбардировщика включает в себя 10 объектов. Вероятность работы каждого объекта равна 0,9. Объекты выходят из строя независимо один от другого. Найти вероятность того, что : а) откажет хотя бы один объект; б) откажут ровно четыре объекта; в) откажут не менее трех объектов. Прядильщица обслуживает 1000 веретен. Вероятность обрыва нити на 1 веретене в течение 1 мин равна 0,003. Вычислите вероятность того, что в течение 1 мин произойдет не более двух обрывов. Вероятность выхода конденсатора из строя в течение времени t равна 0,25. Вычислите вероятность того, что за этот промежуток времени из имеющихся 150 конденсаторов выйдет из строя а) ровно 50 конденсаторов; б) от 40 до 80 конденсаторов. Дан ряд распределения случайной величины Х.
а)Найти значение *;
б) изобразить полигон распределения;
в) найти и изобразить графически функцию распределения;
г )найти вероятность того, что случайная величина Х примет значение в интервале
[3,5; 7,5);
д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5);
е) найти математическое ожидание случайной величины Х;
ж) найти дисперсию случайной величины Х;

xi

1

2

5

7

pi

0,3

0,4

0,1

*

Даны законы распределения двух случайных величин Х и Y:
Найти закон распределения случайных величин а )Z=X+Y; б)U=XY.

xi

-1

0

1

4

pi

0,4

0,1

0,3

0,2

yi

-4

0

1

2

pi

0,1

0,3

0,1

0,5

Случайная величина Х задана функцией плотности распределения

Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения.

Вариант 13

А). Сколько перестановок можно получить из букв слова ГРЕЧИХА ?
Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов?

А). Сколько перестановок можно получить из цифр числа 574836475 ?
Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов?

Из букв слова ПРИВЫЧКА составляются пятибуквенные слова.
А).Сколько таких слов можно получить?
Б) Сколько таких слов начинается с буквы П?
В) А если слова содержат не менее 5 букв?

Решить уравнение

5.   

На рисунке приведена схема электрической цепи. События: ={элемент k работает}; С={ в цепи нет разрыва}. Выразить события и через события и .

В букете, состоящем из 10 цветов 6 красных цветка, остальные синие. Наудачу берется 5 цветов. Определить вероятность того, что красных цветов среди них будет а) ровно 2 штуки; б) не более двух. На окружности радиуса R наудачу поставлены три точки А, В и С. Какова вероятность того, что треугольник АВС остроугольный? Известно, что 96% выпускаемых заводом изделий отвечает стандарту. Упрощенная схема контроля признает пригодной стан­дартную продукцию с вероятностью 0,98 и нестандартную с ве­роятностью 0,05. Определите вероятность того, что изделие, про­шедшее упрощенный контроль, отвечает стандарту. Наблюдениями установлено, что в некоторой местности в июле в среднем бывает 12 дождливых дней. Какова вероятность того, что из восьми случайно выбранных в этом месяце дней а ) ровно четыре окажутся дождливыми; б) дождливыми окажутся хотя бы четыре; в) дождливыми будут не более 7 дней? В зрительном зале находится 400 человек. Какова вероятность того, что среди них имеется 3 левши, если левши в среднем составляют 1%? При штамповке металлических клемм получается в среднем 90% годных. Найдите вероятность того, что среди 900 клемм окажется а) 750 годных; б) от 700 до 820 годных. Дан ряд распределения случайной величины Х.
а)Найти значение *;
б) изобразить полигон распределения;
в) найти и изобразить графически функцию распределения;
г )найти вероятность того, что случайная величина Х примет значение в интервале
[3,5; 7,5);
д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5);
е) найти математическое ожидание случайной величины Х;
ж) найти дисперсию случайной величины Х;

xi

-1

2

3

4

pi

0,4

*

0,1

0,15

Даны законы распределения двух случайных величин Х и Y:
Найти закон распределения случайных величин а )Z=X+Y; б)U=XY

xi

-4

-1

0

2

pi

0,2

0,4

0,3

0,1

yi

-1

-1

2

4

pi

0,1

0,2

0,1

0,6

Случайная величина Х задана функцией плотности распределения

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18