Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения.

Вариант 14

А). Сколько перестановок можно получить из букв слова ГРИМЁР?
Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов?

А). Сколько перестановок можно получить из цифр числа 3845756475 ?
Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов?

Из букв слова ПРИМЕТА составляются пятибуквенные слова.
А).Сколько таких слов можно получить?
Б) Сколько таких слов начинается с буквы П?
В) А если слова содержат не менее 5 букв?

Решить уравнение

5.   

На рисунке приведена схема электрической цепи. События: ={элемент k работает}; С={ в цепи нет разрыва}. Выразить события и через события и .

В студенческой группе 12 человек, из которых 5 девушек, а остальные – юноши. Деканат дал студентам этой группы 5 билетов на концерт группы «Тылобурдо». Найти вероятность, что а)3 билета достанутся девушкам; б) не менее трех билетов достанутся девушкам. Два парохода : «Олег Кошевой» и «Быстроходный» должны подойти к одному причалу. Время прихода каждого парохода независимо и равновозможно в течение суток. Найти вероятность того, что одному из пароходов придется ожидать освобождения причала, если время стоянки парохода «Олег Кошевой» один час, а время стоянки «Быстроходного» - два часа. Брак в продукции завода вследствие дефекта А составляет 5%, причем среди забракованной по признаку А продукции 6% имеют дефект В, а в продукции, свободной от дефекта А, дефект В составляет 2%. Найдите вероятность наличия дефекта. Рабочий обслуживает 10 однотипных станков. Вероятность, что станок потребует внимания рабочего в течение промежутка времени Т, равна 1/3. Найти вероятность того, что за время Т а) 4 станков потребуют внимания рабочего; б) менее 2-х станков потребуют внимания рабочего; в) хотя бы 2 станка потребуют внимания рабочего. Завод отправил партию консервов в 2000 штук. Вероятность того, что консервная банка будет разгерметизирована, равна 0,0035. Какова вероятность того, что разгерметизировано будет не более 5 банок консервов? Известно, что дальтоники составляют примерно 2% . оценить вероятность того, что среди 400 человек окажется а) четверо дальтоников; б) дальтоников не менее 80 , но не более 150 человек. Дан ряд распределения случайной величины Х.
а)Найти значение *;
б) изобразить полигон распределения;
в) найти и изобразить графически функцию распределения;
г )найти вероятность того, что случайная величина Х примет значение в интервале
[3,5; 7,5);
д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5);
е) найти математическое ожидание случайной величины Х;
ж) найти дисперсию случайной величины Х;

xi

0

3

6

7

pi

0,1

0,4

0,1

*

Даны законы распределения двух случайных величин Х и Y:
Найти закон распределения случайных величин а )Z=X+Y; б)U=XY.

xi

-1

0

2

4

pi

0,2

0,1

0,3

0,4

yi

-2

0

1

2

pi

0,1

0,2

0,6

0,1

Случайная величина Х задана функцией плотности распределения

Найдите: 1) функцию распределения и необходимые константы; 2) математическое ожидание, дисперсию и среднее квадратическое отклонение; 3) вероятность попадания случайной величины Х в интервал . Постройте графики функций распределения и плотности распределения.

Вариант 15

А). Сколько перестановок можно получить из букв слова ГРУЗОВИК?
Б). Сколько перестановок будет заканчиваться на гласную букву для четных вариантов, на согласную букву – для не четных вариантов?

А). Сколько перестановок можно получить из цифр числа 4837365744?
Б). Сколько перестановок будет начинаться с четной цифры для четных вариантов, с нечетной цифры – для нечетных вариантов?

Из букв слова ПРИБЫЛЬ составляются пятибуквенные слова.
А).Сколько таких слов можно получить?
Б) Сколько таких слов начинается с буквы П?
В) А если слова содержат не менее 5 букв?

Овал: 1Решить уравнение

5.   

На рисунке приведена схема электрической цепи. События: ={элемент k работает}; С={ в цепи нет разрыва}. Выразить события и через события и .

У Малыша в кульке лежали 10 конфет: 4 карамельки и 6 шоколадных. Карлсон не глядя запустил в кулек руку и достал 6 конфет. Найти вероятность того, что у Карлсона в руке оказалось а) 4 шоколадных конфеты и 2 карамельки; б) карамелек оказалось не более 2. Остап Бендер узнал, что господин Корейко обедает у Синицких ежедневно Обед занимает у Корейко 10 минут. Обед Остапа занимает 20 минут. Оба они приходят на обед ежедневно в любое время с 12 до 14 часов. Найти вероятность того, Бендер и Корейко что они встретятся у Синицких. 4 стрелка независимо друг от друга стреляют по одной мишени, делая каждый по одному выстрелу. Вероятности попадания для данных стрелков равны 0,4; 0,6; 0,7; 0,8. После стрельбы в мишени обнаружены 3 пробоины. Найдите вероятность того, что промахнулся четвертый стрелок. Китайский завод изготавливает изделия, каждое из которых с вероятностью 1/3 оказывается дефектным. Для контроля продукции выбирается 8 изделий. Найти вероятность того, что а) ни в одном изделии не будет дефекта; б) не менее чем в трех изделиях будет обнаружен дефект; в) ровно в трех изделиях будет дефект. Вероятность попадания в цель при каждом выстреле равна 0,001. Найдите вероятность попадания в цель двумя и более выстрелами при залпе из 3000 орудий. Полагая, что вероятность поражения мишени при одном выстреле равна 0,7, найти вероятность того, что а) при 200 выстрелах мишень окажется поражена 110 раз; б) мишень будет поражена от 60 до 140 раз. Дан ряд распределения случайной величины Х.
а)Найти значение *;
б) изобразить полигон распределения;
в) найти и изобразить графически функцию распределения;
г )найти вероятность того, что случайная величина Х примет значение в интервале
[3,5; 7,5);
д) Найти вероятность того, что случайная величина не попадет в интервал [3,5; 7,5);
е) найти математическое ожидание случайной величины Х;
ж) найти дисперсию случайной величины Х;

xi

1

3

5

6

pi

*

0,2

0,1

0,3

Даны законы распределения двух случайных величин Х и Y:
Найти закон распределения случайных величин а )Z=X+Y; б)U=XY.

xi

-2

-1

0

2

pi

0,2

0,1

0,3

0,4

yi

-1

0

1

4

pi

0,1

0,1

0,1

0,7

Случайная величина Х задана функцией плотности распределения

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18