Вообще конечная точка - это конец логического канала данных между хостом и устройством. В свою очередь канал - это логическое соединение между хостом и устройством. Так как конечных точек у устройства предусматривается несколько, то это означает, что обмен данными между хост-контроллером и устройством на шине может происходить по нескольким каналам, так называемый многоканальный режим. Полоса пропускания шины делиться между всеми установленными каналами. В распоряжение шина USB может предоставить каналы следующих типов:
- Каналы сообщений. Являются двунаправленными каналами и служат, не трудно сообразить, для передачи сообщений, имеющих строго определенный в спецификации формат, необходимый для обеспечения надежной идентификации и передачи команд. Возникает канал при отсылке хостом запроса в устройства, и управляет передачей только хост. Каналы сообщений используется для передач только управляющего типа (что такое смотрим ниже). Потоковые каналы. Являются однонаправленными. В отличие от четко определенных сообщений не имеют определенного закрепленного в стандарте формата, что означает возможность передачи данных любого вида. Эти передачи могут контролироваться не только хостом, но и устройством. Используется для передач данных типа прерывание, групповая пересылка, изохронная (смотрим ниже). В спецификации в зависимости от типа передаваемых данных, предъявляемых требований к скорости обработки, задержки доставки и т. п. определены следующие типы передач. Управляющие передачи. Используются для конфигурирования устройств во время подключения и выполнения других специфических функций над устройством, включая организацию новых каналов. Прерывания. Используются для спонтанных, но гарантированных передач с гарантированными скоростями и задержками. Используются обычно для передачи введенных данных от клавиатуры или сведений об изменении положения указателя мыши, в устройствах обратной связи, и. т.д Групповая пересылка. Используется для гарантированной передачи данных больших объемов без предъявленных требований к скоростям и задержкам. Занимает под себя всю свободную пропускную способность шины. В любой момент доступная полоса может быть урезана при необходимости осуществления передач других видов с более высоким приоритетом, или добавлена, при освобождении другими устройствами. Обычно такие передачи используется между принтерами, сканерами, накопителями и др. Изохронная передачи. Используются для потоковых передач данных в реальном времени. Резервируют определенную полосу пропускания шины, гарантируют определенные величины задержек доставки, но не гарантируют доставку (в случае обнаружения ошибки повторной передачи не происходит. Передачи этого вида используются для передачи аудио и видео трафика.
Обмен данными может осуществляться в трех скоростных режимах:
- Low Speed. Низкоскоростной режим. Скорость передачи составляет 1.5 Мбит/с. Full Speed. Полноскоростной режим. Скорость передачи 12 Мбит/с. High Speed. Высокоскоростной режим. Появился лишь в спецификации 2.0. Скорость передачи 480 Мбит/с.
Устройства на шине USB делятся на ведущие и ведомые. Фактически, ведущих устройств на шине может быть только одно, и таковым является хост. Все передачи данных инициируются хостом в соответствии определенной временной программой. Функциональные устройства сами не могут инициировать передачу, а лишь отвечают на запросы хоста. Обмен данными возможен только между хостом и устройством, и не возможен на прямую между устройствами подключенными к шине (это означает, что в принципе в первую очередь USB - это шина вывода. Транзакции на USB шине состоят из двух-трех актов: посылки пакета маркера, определяющего, что будет следовать дальше (тип транзакции, адрес устройства и его конечную точку), пакета данных (опционально), и пакета статуса транзакции (для подтверждения нормального выполнения операции или сообщения об ошибке). [3]
Приоритеты передач по USB-шине
Все операции по передаче данных инициируются хост-системой независимо от того, принимает ли она данные или пересылает в периферийное устройство. Все не выполненные операции хранятся в виде четырех списков по типам передач:
- изохронные передачи;
- передачи прерываний;
- передачи управляющих команд;
- передачи данных больших объемов.
Списки постоянно обновляются новыми запросами. Планирование операций по передаче информации в соответствии с упорядоченными в виде списков запросами выполняется хостом с 1-миллисекундным интервалом. В начале каждого такого интервала хост посылает по шине пакет SOF (Start Of Frame - начало кадра), после чего начинается обслуживание запросов из списка изохронных передач (т. к. они имеют наивысший приоритет).
После того, как все запросы из этого списка будут обслужены, хост-система переходит к списку операций по передачи прерываний, затем к списку запросов на передачу данных большого объема.
По истечении 90% указанного 1-миллисекундного интервала хост автоматически переходит к обслуживанию запросов на передачу управляющих команд независимо от того, успел ли он полностью обслужить другие три списка или нет.
Тем самым гарантируется, что управляющим передачам всегда будет выделено не менее 10% пропускной способности шины. Если передача всех управляющих пакетов будет завершена до истечения выделенной для них доли интервала планирования, то оставшееся время будет использовано хостом для передачи данных большого объема ( до конца указанного 1-миллисекундного интервала).
Таким образом:
- изохронные передачи гарантированно получают 90% пропускной способности шины;
- передачи прерываний занимают оставшуюся часть изохронных операций часть этой 90-процентной доли;
- под передачу данных большого объема выделяется все время, оставшееся после изохронных передач и передач прерываний (по-прежнему в рамках 90%-ой доли пропускной способности);
- управляющим передачам гарантируется 10% пропускной способности;
- если передача всех управляющих пакетов будет завершена до истечения выделенного для них 10%-го интервала, то оставшееся время будет использовано для передачи данных большого объема. [4]
Источники информации
1. www. (USB-Lin. html)
2. www. is. (USB Masters. htm)
3. Компьютерная документация от А до Я. (Технология USB 2.0. htm)
4. www. zyxel. ru – База знаний
Лекция 16. Интерфейс IEEE-1394 (FireWire).
В последнее время, в связи с бурным ростом возможностей компьютерной обработки видеоизображений в компьютерном мире возникла острейшая нужда в высокоскоростной шине, по которой было бы возможно передавать значительные потоки данных, и кроме этого, требовала всего нескольких проводов (т. е. была бы последовательной), позволяла бы строить "деревья", на которые можно было бы "нанизывать" различные периферийные устройства. По скоростным характеристикам из существующих шин, допускающих подключение внешних устройств к компьютеру, подходит только SCSI, но она не удовлетворяет многим из условий, описанных выше.
Во-первых, для высокоскоростной передачи данных необходим вариант Ultra Wide SCSI, который требует разъемов с большим числом контактов, что делает практически невозможным размещение такого разъема на, например, цифровой видеокамере. Во-вторых, топология SCSI шины предполагает только последовательное подключение устройств к шине, что приводит как к необходимости иметь на внешнем устройстве два разъема и так и иметь в обязательном порядке терминатор для установки его на последнем разъеме в цепи. В-третьих, шина SCSI не предусматривает цепей питания для периферийных устройств и это приводит к обязательной необходимости внешнего источника питания для каждого из периферийных устройств. В-четвертых, шина SCSI не предусматривает "горячего" (т. е. без выключения питания и перезагрузки компьютера) подключения/отключения устройств на шине.
Интерфейс USB, который очень подходит конструктивно (маленький разъем, есть цепи питания для периферийных устройств), не имеет необходимой для переноса больших потоков данных пропускной способности. Новый вариант USB 2.0, который начал разрабатываться в 1999 году, удовлетворяет практически всем требованиям к высокоскоростной шине, но завершение его разработки планируется только в первом квартале 2000 года, а появление первых устройств с его поддержкой - не ранее конца 2000 года.
Именно из-за ограничений имеющихся шин интерфейс IEEE-1394 (FireWire) стал широко внедряться в компьютерной индустрии в последние годы уходящего века. Так как название FireWire (огненный провод) принадлежит фирме Apple Computers и может использоваться только для описания изделий Apple или с ее разрешения, правильное название - IEEE-1394. Некоторые компании придумали собственное зарегистрированное название, например у Sony - iLink. Пока основная сфера применения IEEE-1394 - поддержка обмена данными между компьютером и видеокамерами и видеомагнитофонами DV стандарта. В связи с тем, что DV видеокамеры выпускаются во все больших и больших количествах и при непрерывном падении стоимости, некоторые производители материнских плат уже объявили о выходе плат со встроенным контроллером IEEE-1394. В частности, фирма ASUSTeK Computers выпустила материнскую плату P3B-1394 со встроенным контроллером IEEE-1394.
Новая сфера применения, получившая основное развитие с начала 2000 года - устройства хранения информации с интерфейсом IEEE-1394. Начали выпускаться внешние box'ы для установки в них любых IDE/ATAPI устройств с внешним интерфейсом IEEE-1394, питанием по этому же интерфейсу и возможностью "горячего" подключения к компьютеру. В первую очередь такие устройства находят себе применение для обмена видеоинформацией, так как на один IDE жесткий диск сейчас возможно записать до 3 часов видео DV формата и, как правило, в компьютерах, предназначенных для обработки цифрового видео, есть контроллер интерфейса IEEE-1394. Фирма Fujitsu также выпустила аналогичные накопители на магнитооптических дисках емкостью до 1.3 GBytes.
Технические характеристики
Основные характеристики шины можно свести к следующим показателям:
скорость передачи данных до 400 Mbits/s с развитием шины в будущем до скоростей в 800 и более Mbits/s
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |



