Data Register (DR) — регистр данных, адрес= BASE. Данные, записанные в этот порт, выводятся на выходные линии интерфейса. Данные, считанные из этого регистра, в зависимости от схемотехники адаптера соответствуют либо ранее записанным данным, либо сигналам на тех же линиях.

Status Register (SR) — регистр состояния, представляющий собой 5-битный порт ввода сигналов состояния принтера (биты SR.4-SR.7), адрес= BASE+1. Бит SR.7 инвертируется — низкому уровню сигнала соответствует единичному значению бита в регистре, и наоборот.

Control Register (CR) — регистр управления, адрес=ВА5Е+2. Как и регистр данных, этот 4-битный порт вывода допускает запись и чтение (биты 0-3), но его выходной буфер обычно имеет тип открытый коллектор. Это позволяет более корректно использовать линии данного регистра как входные при программировании их в высокий уровень. Биты О, 1, 3 инвертируются — единичному значению в регистре соответствует низкий уровень сигнала, и наоборот.

Запрос аппаратного прерывания (обычно IRQ7 или IRQ5) вырабатывается по отрицательному перепаду сигнала на выводе 10 разъема интерфейса (АСК#) при установке CR.4=1. Прерывание вырабатывается, когда принтер подтверждает прием предыдущего байта.

Процедура вывода байта по интерфейсу Centronics через стандартный порт включает следующие шаги (в скобках приведено требуемое количество шинных операций процессора):

Вывод байта в регистр данных (1 цикл IOWR#).

Ввод из регистра состояния и проверка готовности устройства (бит SR.7 — сигнал BUSY).

По получении готовности выводом в регистр управления устанавливается строб данных, а следующим выводом строб снимается (2 цикла IOWRff).

Стандартный порт сильно асимметричен — при наличии 12 линий (и бит), нормально работающих на вывод, на ввод работает только 5 линий состояния. Если необходима симметричная двунаправленная связь, на всех стандартных портах работоспособен режим полубайтного обмена — Nibble Mode. В этом режиме, называемом также и Hewlett Packard Bitronics, одновременно передаются 4 бита данных, пятая линия используется для квитирования.

Функции BIOS для LPT-порта

BIOS обеспечивает поддержку LPT-порта, необходимую для организации вывода по интерфейсу Centronics.

В процессе начального тестирования POST BIOS проверяет наличие параллельных портов по адресам ЗВСЬ, 378h и 278h и помещает базовые адреса обнаруженных портов в ячейки BIOS DATA AREA 0:0408h, 040Ah, 040СП, 040ЕП. Эти ячейки хранят адреса портов с логическими именами LPT1-LPT4. В ячейки 0:0478, 0479, 047А, 047В заносятся константы, задающие выдержку тайм-аута для этих портов.

Поиск портов обычно ведется по базовому адресу. Если считанный байт совпал с записанным, считается, что найден LPT-порт, и его адрес помещают в ячейку BIOS DATA AREA. Адрес порта LPT4 BIOS самостоятельно установить не может, поскольку в списке стандартных адресов поиска имеются только три вышеуказанных.

Обнаруженные порты инициализируются — записью в регистр управления формируется и снимается сигнал Initff, после чего записывается значение 00h, соответствующее исходному состоянию сигналов интерфейса.

Программное прерывание BIOS I NT 17h обеспечивает следующие функции поддержки LPT-порта:

00h — вывод символа из регистра AL по протоколу Centronics. Данные помещаются в выходной регистр и после готовности принтера формируется строб.

01h — инициализаия интерфейса и принтера.

02h — опрос состояния принтера.

При вызове INT 17h номер функции задается в регистре АН, номер порта — в регистре DX (0 — LPT1,  1 — LPT2...). При возврате после любой функции регистр АН содержит код состояния — биты регистра состояния SR[7:3] (биты 6 и 3 инвертированы) и флаг тайм-аута в бите 0. Флаг тайм-аута устанавливается при неудачной попытке вывода символа.

Расширения параллельного порта

Недостатки стандартного порта частично устраняют новые типы портов, появившихся в компьютерах семейства PS/2.

Двунаправленный порт 1 (Typel parallel port) — интерфейс, введенный с PS/2. Такой порт кроме стандартного режима может работать в режиме ввода или двунаправленном. Протокол обмена формируется программно, а для указания направления передачи в регистр управления порта введен специальный бит: при CR.5=0 буфер данных работает на вывод, при CR.5=1 — на ввод.

Порт с прямым доступом к памяти (Type 3 DMA parallel port) применялся в PS/2 моделей 57, 90, 95. Этот тип был введен для повышения пропускной способности и разгрузки процессора при выводе на принтер. Программе, работающей с данным портом, требовалось только задать блок данных в памяти, подлежащих выводу, и вывод по протоколу Centronics производился без участия процессора.

Физический и электрический интерфейс

Стандарт IEEE 1284 определяет физические характеристики приемников и передатчиков сигналов.

К передатчикам предъявляются следующие требования:

Уровни сигналов без нагрузки не должны выходить за пределы -0,5... +5,5 В.

Уровни сигналов при токе нагрузки 14 мА должны быть не ниже +2,4 В для высокого уровня (voh) и не выше +0,4 В для низкого уровня (vol) на постоянном токе.

Выходной импеданс ro, измеренный на разъеме, должен составлять 50(±)5 Ом на уровне voh-vol. Для обеспечения заданного импеданса в некоторых случаях используют последовательные резисторы в выходных цепях передатчика. Согласование импеданса передатчика и кабеля снижает уровень импульсных помех.

Скорость нарастания (спада) импульса должна находиться в пределах 0,05-0,4 В/нс.

Режимы передачи данных

Стандарт IEEE 1284 определяет пять режимов обмена, один из которых полностью соответствует традиционному стандартному программно-управляемому выводу по протоколу Centronics. Остальные режимы используются для расширения функциональных возможностей и повышения производительности интерфейса. Стандарт определяет способ согласования режима, по которому программное обеспечение может определить режим, доступный и хосту (в нашем случае это PC), и периферийному устройству.

Режимы нестандартных портов, реализующих протокол обмена Centronics аппаратно («Fast Centronics, «Parallel Port FIFO Mode»), могут и не являться режимами IEE1284, несмотря на наличие в них черт ЕРР и ЕСР.

При описании режимов обмена фигурируют следующие понятия:

Хост — компьютер, обладающий параллельным портом.

ПУ — периферийное устройство, подключаемое к этому порту (им может оказаться и другой компьютер). В обозначениях сигналов Ptr обозначает передающее периферийное устройство.

Прямой канал — канал вывода данных от хоста в ПУ.

Обратный канал  канал ввода  данных в хост из ПУ.

Полубайтный режим ввода — Nibble Mode

Режим полубайтного обмена является наиболее общим решением задачи двунаправленного обмена данными, поскольку может работать на всех стандартных (традиционных) портах. Все эти порты имеют 5 линий ввода состояния, используя которые периферийное устройство может посылать в PC байт тетрадами (nibble — полубайт, 4 бита) за два приема. Назначение сигналов порта приведено в табл 4.

Таблица 4.

Сигналы LPT-порта в полубайтном режиме ввода


Контакт

Сигнал SPP

I/O

Использование сигнала при приеме данных в Nibble Mode

14

AUTOFEED#

0

HostBusy — сигнал квитирования. Низкий уровень означает готов­ность к приему тетрады, высокий подтверждает прием тетрады

17

SELECTIN»

0

Высокий уровень указывает на обмен в режиме IEEE 1284 (в режиме SPP уровень низкий)

10

АСК#

'

PtrClk. Низкий уровень означает действительность тетрады, переход в высокий — ответ на сигнал HostBusy

11

BUSY

I

Прием бита данных 3, затем бита 7

12

РЕ

I

Прием бита данных 2, затем бита 6

13

SELECT

I

Прием бита данных 1, затем бита 5

15

ERRORS

I

Прием бита данных 0, затем бита 4


Прием байта данных в полубайтном режиме состоит из следующих фаз:

1. Хост сигнализирует о готовности приема данных установкой низкого уровня на линии HostBusy.

2. ПУ в ответ помещает тетраду на входные линии состояния.

3. ПУ сигнализирует о действительности тетрады установкой низкого уровня на линии PtrClk.

4. Хост устанавливает высокий уровень на линии HostBusy, указывая на заня­тость приемом и обработкой тетрады.

5. ПУ отвечает установкой высокого уровня на линии PtrCLk.

6. Шаги 1-5 повторяются для второй тетрады.

Полубайтный режим работает на всех портах со скоростью обмена не выше 50 Кбайт/с. Его применяют в тех случаях, когда прием данных от устройства производится в небольших объемах (например, для связи с принтерами).

Двунаправленный байтный режим Byte Mode

Данный режим обеспечивает прием данных с использованием двунаправленного порта, у которого выходной буфер данных может отключаться установкой бита CR.5=1. Как и в стандартном и в полубайтном режиме, данный режим является программно-управляемым — все сигналы квитирования анализируются и устанавливаются программным драйвером. Назначение сигналов порта приведено в табл. 5.

Таблица 5.

Сигналы LPT-порта в байтном режиме ввода/вывода

Контакт

Сигнал SPP

Имя в Byte Mode

I/O

Описание

1

STROBES

HostClk

0

Импульс (низкого уровня) подтверждает прием байта в конце каждого цикла

14

AUTOFEED#

HostBusy

0

Сигнал квитирования. Низкий уровень означает готовность хоста принять байт, высокий уровень устанавливается по приему байта

17

SELECT-IN»

1284Active

0

Высокий уровень указывает на обмен в режиме IEEE 1284. (В режиме SPP уровень низкий)

16

INIT#

INIT#

0

Не используется, установлен высокий уровень

10

АСКй

Ptrtik



Устанавливается в низкий уровень для инди­кации действительности данных на линиях DATA[7:0]. В низкий уровень устанавливается в ответ на сигнал HostBusy

11

BUSY

PtrBusy

I

Состояние занятости прямого канала

12

РЕ

AckDataReq*

I

Устанавливается ПУ для указания на наличие обратного канала передачи*

13

SELECT

Xflag*

I

Флаг расширяемости*

15

ERRORS

DataAvau#*

I

Устанавливается ПУ для указания на наличие обратного канала передачи*

2-9

DATA[7:0]

DATA[7:0]

I/0

Двунаправленный (прямой и обратный) канал данных


Прием байта данных в байтном режиме состоит из следующих фаз:

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58