3. Методы получения и структура основных типов полимеров

3.1. Виды полимеризации. Инициирование и ингибирование полимеризации

Вопрос 1319

3.4. Ионная и ионно-координационная полимеризация

Вопросы 4501 – 4503, 4404 – 4409, 4

Раздел №12. Сополимеризация

12.1. Радикальная сополимеризация

Радикальную сополимеризацию обычно инициируют теми же способами, что и радикальную гомополимеризацию. Для неё, в принципе, характерны те же механизмы роста, обрыва и передачи цепи. Рассмотрим сополимеризацию двух мономеров. Предполагая, что активность радикалов роста определяется лишь типом концевого звена, следует учитывать четыре элементарные реакции роста:

Таблица 12.1.1.

Элементарные реакции роста цепи

где Мi — мономер i-ого типа; ~R∙j — макрорадикал, оканчивающийся звеном Mj, а kij — константа скорости присоединения Мj мономера к радикалу ~R∙i. Рассматриваемая модель получила название "модель концевого звена" сополимеризации. Кинетическая обработка приведенной реакционной схемы в квазистационарном приближении позволяет установить связь между составом сополимеров и составом исходной смеси мономеров. В квазистационарном состоянии концентрации радикалов ~R∙1 и ~R∙2 постоянны, т. е. скорости перекрестного роста цепи равны между собой:

 

(12.1.1)

Скорости превращения мономеров при сополимеризации описываются уравнениями:

 

(12.1.2)

Из отношения скоростей этих реакций с учетом условия стационарности для концентраций радикалов (12.1.1) несложно получить следующее выражение, обычно называемое уравнением Майо-Льюиса, характеризующее на начальных стадиях превращения, когда без большой ошибки можно положить концентрации мономеров [M1] и [M2] величинами постоянными, зависимость состава получаемого сополимера от состава мономерной смеси:

(12.1.3)

 

где, а так называемые константы сополимеризации. Они представляют собой отношения констант скоростей присоединения к данному радикалу "своего" и "чужого" мономеров. Значение r1 и r2 зависят от химической природы реагирующих мономеров.

Рис. 12.1.1. Зависимость состава сополимера от состава смеси мономеров.

Зависимость состава сополимеров от состава смеси мономеров удобно характеризовать диаграммой "состав мономерной смеси - состав сополимера" (рис. 12.1.1.). Форма кривых на диаграмме составе зависит от значений r1 и r2. При этом возможны следующие случаи: 1) r1=r2=1, т. е. для всех соотношений концентраций мономеров в реакционной смеси состав сополимера равен составу исходной смеси (прямая б), 2) r1>1 и r2<1, т. е. для всех соотношений концентраций мономеров в исходной смеси сополимер обогащен звеньями М1 (кривая а), 3) r1<1 и r2>1, т. е. для всех исходных соотношений концентраций мономеров сополимер обогащен звеньями М2 (кривая г), и наконец, 4) r1<1 и r2<1, т. е. при малых содержаниях M1 в исходной смеси мономеров сополимер обогащен звеньями М1, а при больших — звеньями M2 (кривые в и д). В последнем случае наблюдается склонность к чередованию в сополимере звеньев М1 и М2, которая тем больше, чем ближе к нулю значения r1 и r2. Случай r1>1 и r2>1, которому должна соответствовать тенденция к раздельной полимеризации мономеров в смеси, обычно на практике не реализуется.

Величины r1 и r2 могут быть определены экспериментально. Знание их позволяет предсказать состав сополимера и распределение мономерных звеньев в цепях при любом соотношении мономеров в смеси. Значения r1 и r2 при радикальной сополимеризации и, следовательно, состав сополимера обычно слабо зависят от природы растворителя и очень мало меняются с температурой.

Рассмотрение величин r1 и r2 в рамках теории идеальной радикальной реакционной способности приводит к заключению, что r1*r2=1, т. е. константы скоростей присоединения одного из мономеров к обоим радикалам в одинаковое число раз больше констант скоростей присоединения другого мономера к этим радикалам. Имеется ряд систем, для которых это условие хорошо оправдывается на опыте. В таких случаях мономерные звенья обоих типов располагаются в макромолекулах случайно. Однако для многих систем r1*r2<1. Это отклонение связано с влиянием полярных и пространственных факторов, которые обусловливают тенденцию мономерных звеньев М1 и М2 к чередованию в макромолекулах. В таблице в качестве примеров приведены значения констант сополимеризации и их произведений для некоторых пар мономеров.

Таблица 12.1.2.

Константы радикальной сополимеризации некоторых мономеров.

М1

М2

r1

r2

r1r2

Стирол

Бутадиен

0,80

1,40

1,12

Стирол

Метилметакрилат

0,52

0,46

0,24

Стирол

Винилацетат

55,0

0,01

0,55

Стирол

Малеиновый ангидрид

0,01

0

0

Винилацетат

Винилхлорид

0,23

1,70

0,39

Метилакрилат

Винилхлорид

9,0

0,08

0,75

12.2. "Схема Q - е" Алфрея – Прайса

Учет полярных факторов был сделан в рамках полуэмпирической схемы, называемой схемой "Q-е", в которой принимают, что

(12.2.1)

где Рi и Qj — параметры, соответствующие энергиям сопряжения в мономере (j) и радикале (i), согласно теории идеальной радикальной реакционной способности. Величины еi и еj учитывают поляризацию реагирующих мономеров.

Тогда:

(12.2.2)

(12.2.3)

Используя эту схему, удалось оценить относительную реакционную способность мономеров и роль полярных факторов для большого числа пар сополимеризующихся мономеров. За стандартный мономер был принят стирол со значениями Q=1, е = −0,8. При сополимеризации стирола с другими мономерами (Mj) последние были охарактеризованы своими значениями Qj и еj, что дало возможность предсказать поведение этих мономеров в реакциях сополимеризации с другими мономерами, для которых также были установлены значения Q и е. Хотя схема "Q-е" не имеет полного теоретического обоснования, с практической точки зрения она оказалась полезной. Значения Q и е большинства мономеров собраны в справочной литературе.

12.3. Ионная сополимеризация

В катионной и анионной сополимеризации относительные активности мономеров часто очень сильно отличаются от таковых для радикальной сополимеризации. Поэтому при одинаковом соотношении сомономеров в смеси в зависимости от типа сополимеризации, могут быть получены сополимеры, резко различные по составу.

Таблица 12.3.1.

Влияние механизма реакции на состав продукта сополимеризации эквимолярной смеси стирола с метилметакрилатом

Катализатор

Тип полимеризации

Содержание стирола в сополимере, %

SnCl4

Катионная

99

Na

Анионная

< 1

Пероксид бензоила

Радикальная

≈ 50

Изучение зависимости состава сополимера от природы катализатора дает сведения о механизме реакции. В отличие от радикальной сополимеризации, состав сополимеров, о6разующихся при катионной и анионной сополимеризации, зависит от природы растворителя. Особенно сильно эта зависимость проявляется при анионной сополимеризации. Состав сополимеров зависит также от природы противоиона. При ионной полимеризации и сополимеризации в ряде случаев важную роль играет комплексообразование между активным центром и молекулой мономера, предшествующее включению последней в растущую цепь. Продолжительность жизни такого комплекса (т. е. время с момента его образования до включения очередной молекулы мономера в состав макромолекулы) может значительно превышать продолжительность жизни переходного состояния в обычных цепных реакциях (10-13 сек.), т. е. промежуточные комплексы могут оказаться достаточно стабильным. В таких случаях ионную полимеризацию или сополимеризацию называют координационно- ионной.

Условия комплексообразования, состав и строение комплексов зависят от природы растворителя. Возможно, что с этим связана одна из важных причин влияния растворителя на состав сополимеров.

12.4. Способы проведения полимеризации

Выбор способа полимеризации определяется конкретными требованиями, которые предъявляют к продукту полимеризации, а также природой полимеризуемого мономера, используемого инициатора и задачами, которые ставятся при осуществлении полимеризации. На практике обычно используют четыре способа проведения полимеризации: в блоке (или в массе), в растворе, в эмульсии и в суспензии (иногда суспензионную полимеризацию называют капельной или бисерной).

1. Полимеризация в блоке (блочная полимеризация) - это полимеризация мономера в конденсированной фазе в отсутствии растворителя. Если реакцию ведут до практически полного превращения мономера, то получают монолит (блок), имеющий форму сосуда, в которой был залит исходный мономер. При блочной полимеризации можно использовать как инициаторы радикальной, так и катализаторы ионной полимеризации, растворимые в мономере. Основным преимуществом данного способа является возможность использования блоков полимера без последующей переработки и отсутствие стадии отделения от растворителя. Основной недостаток - сложность отвода выделяющего тепла, особенно при высокой вязкости системы. Вопросы отвода тепла решают путем обрыва процесса на ранних стадиях превращения или проведением полимеризационных процессов в несколько стадий. Так при непрерывной полимеризации этилена при высоких давлениях процесс останавливают на невысоких степенях завершения реакции %), выделяют образовавшийся полимер, а непрореагировавший мономер снова пускают в производственный цикл. При полимеризации стирола и метилметакрилата в массе проблема теплоотвода решается проведением реакции в две стадии. На первой стадии форполимеризации при невысоких температурах (до 80ºC) получают 20-30% растворы полимера в собственном мономере. На второй стадии температуру в реакторе повышают и полимеризацию доводят до полного превращения мономера.

2. Полимеризацию в растворе проводят либо в жидкости, смешивающейся с мономером и с образующимся полимером ("лаковый способ"), либо в среде, растворяющей только мономер. В последнем случае образующийся полимер выпадает из раствора и может быть отделен фильтрованием. Преимущество этих способов - легкость отвода выделяющегося тепла. Недостатки метода связаны с необходимостью дополнительных затрат на подготовку растворителя, отделение и регенерацию растворителя, промывку и сушку полученного полимера. Кроме того, полимеризацию в этом случае трудно довести до полного исчерпания мономера и получить продукт высокого молекулярного веса, так как концентрация мономера непрерывно убывает и на конечной стадии оказывается очень малой.

Полимеризацией в растворе по радикальному механизму получают поливинилацетат, полиакрилонитрил, политетрафторэтилен и некоторые полиакрилаты. Среди ионных и координацнонно-ионных процессов необходимо упомянуть синтез бутил-каучука и бутадиен-стирольных каучуков на литийорганических катализаторах, полимеризацию этилена и других α-олефинов на катализаторах Цнглера-Натта.

3. Полимеризация в эмульсии (эмульсионная полимеризация) - один из распространенных промышленных способов получения полимеров, осуществляемый в среде с высокоразвитой поверхностью раздела между несмешивающимися фазами, одна из которых содержит мономер. Инициаторами эмульсионной полимеризации, вообще говоря, могут служить как радикалы, так и ионы.

При проведении эмульсионной полимеризации в качестве дисперсионной среды чаще всего используют воду. В таком случае мономер, нерастворимый или плохо растворимый в воде, вводят в количестве 30-60 об.%. Для стабилизации эмульсии используют поверхностно-активные вещества ПАВ (олеаты, пальмитаты, лаураты щелочных металлов, натриевые соли ароматических и высокомолекулярных жирных сульфокислот и др.). При достаточно высоких концентрациях ПАВ в водных растворах образуются мицеллы эмульгатора. Мономер частично растворяется в мицеллах, а частично остается в системе в виде достаточно крупных капель (диаметр порядком 10-4 см), стабилизированных эмульгатором. Число мицелл в системе примерно в 108 раз больше числа капель мономера. Полимеризацию обычно инициируют водорастворимыми низкотемпературными окислительно-восстановительными инициаторами.

Полимеризация начинается в мицеллах, которые вскоре превращаются в латексные частицы полимера коллоидных размеров, окруженные слоем эмульгатора. При этом на начальных стадиях процесса происходит как увеличение числа, так и рост размеров латексных частиц. В дальнейшем, после исчерпания мицеллярного эмульгатора, новые частицы не образуются, а имеющиеся увеличиваются в размере за счет диффузии мономера из капель. Полимеризация завершается после израсходования капель мономера. В каплях мономера полимеризация практически не происходит, так как инициатор растворим лишь в водной фазе, а вероятность столкновения инициирующего радикала с каплей гораздо меньше, чем с мицеллой. Важно подчеркнуть, что мицеллы, а затем и образующиеся из них латексные частицы служат эффективными ловушками для радикалов. Обратный выход макрорадикалов из частиц в водную среду невозможен ввиду нерастворимости полимера в воде (выйти из частицы могут лишь низкомолекулярные радикалы, образующиеся в частицах за счет реакции передачи цепи). Такой механизм изолирования радикалов, являющийся специфическим для эмульсионной полимеризации, позволяет значительно повысить концентрацию радикалов роста по сравнению с гомогенными процессами (при равных скоростях инициирования) вследствие невозможности взаимного обрыва радикалов из разных латексных частниц. Это обстоятельство открывает возможность получения полимеров с высокими молекулярными массами при скоростях реакции, значительно превышающих скорости при гомогенной полимеризации. К преимуществам данного метода следует отнести также легкость теплоотвода. Недостатки метода в основном связаны с дополнительными затратами на очистку конечного продукта от эмульгатора.

Эмульсионная полимеризация широко используется для получения полимеров на основе сопряженных диенов: бутадиена и изопрена и др. Этим способом полимеризуют также винилацетат, винилхлорид, акрилаты, метакрилаты и их смеси.

Полимеризацию в суспензии, так называемую «гранульную полимеризацию», проводят, диспергируя мономер, в виде капель размером порядка см в нерастворяющей или плохо растворяющей среде (обычно в воде). Капли стабилизируют водорастворимыми полимерами (поливиниловый спирт, желатин), а также твердыми гидрофильными порошками (тальк, глина, окись магния). В отличие от эмульсионной полимеризации, при суспензионной полимеризации используют радикальные инициаторы, растворимые в мономере. Поэтому полимеризацию в каждой капле можно рассматривать как микроблочную полимеризацию со всеми ее закономерностями. Полимер образуется в виде мелких гранул, пригодных для дальнейшей переработки в изделия. Недостаток суспензионной полимеризации, как и в случае эмульсионной полимеризации - необходимость отмывания полимера от стабилизатора суспензии. Полимеризацию в суспензии используют для синтеза поливинилхлорида, полистирола, полиметилметакрилата, поливинилацетата и других полимеров.

Вопросы для самостоятельной проработки:

1.  Что такое константы сополимеризации?

2.  Вывод и анализ уравнения дифференциального состава сополимера.

3.  Как меняется состав сополимера в зависимости от состава исходной смеси при различных значениях констант сополимеризации?

4.  Диаграмма составов.

5.  Влияние полярности мономеров и радикалов на процесс сополимеризации. Q-е схема.

6.  Зависимость состава сополимера при ионной сополимеризации от различных факторов.

7.  Перечислите основные преимущества и недостатки существующих способов проведения полимеризации.

Задачи для самостоятельного решения

3. Методы получения и структура основных типов полимеров

3.5. Радикальная сополимеризация

Вопросы 5501 – 5504, 5405 – 5408, 5309 – 5316

3.6. Ионная сополимеризация

Вопросы 6501 – 6503, 6404 – 6406, 6

Раздел № 13. Поликонденсация

Поликонденсация – процесс синтеза высокомолекулярных соединений, в котором рост макромолекул происходит путем химического взаимодействия концевых групп (многократно повторяющихся реакций конденсации) исходных полифункциональных молекул друг с другом, с реакционноспособными n-мерами (олигомерами), а также n-меров между собой.

Поликонденсацией получают около 30% всех производимых полимеров, а также проводят химический синтез пептидов, белков, нуклеиновых кислот.

Пример реакции - поликонденсация этиленгликоля и адипиновой кислоты:

Образовавшийся димер может реагировать по тому же механизму с молекулой адипиновой кислоты или с молекулой этиленгликоля с образованием соответствующих тримеров (т. к. димер имеет также 2 функциональные группы, и возможно присоединение по группе –COOH или по группе –OH), а также возможна реакция двух молекул димеров между собой с образованием тетрамера. Затем образовавшиеся димеры, тримеры, тетрамеры, n-меры могут реагировать между собой или с молекулами мономеров – происходит удлинение цепочки.

В процессе поликонденсации выделяются молекулы воды, и образуется сложноэфирная связь (обратный процесс – процесс гидролиза).

Получение полиуретанов

в приведенном примере нет выделения низкомолекулярного продукта, но характер формирования молекул соответствует поликонденсации; такие реакции называются реакциями полиприсоединения.

Таким образом, исходные молекулы должны быть бифункциональными, чтобы происходил процесс поликонденсации.

Характер формирования макромолекул различен в процессах поликонденсации и полимеризации.

Напомним, что процесс полимеризации протекает по схеме:

Рассмотрим основные особенности процессов полимеризации и поликонденсации (табл.13.1).

Таблица 13.1.

Основные особенности процессов полимеризации и поликонденсации

№ п/п

Особенность процесса

Полимеризация (ПМ)

Поликонденсация (ПК)

1

Характер образования цепи

Цепной.

Продуктом процесса является макромолекула.

Нарастание длины макромолекулы происходит по «ступеням» различной величины

2

Зависимость средней степени полимеризации от числа реакций, составляющих стадию образования макромолекул

Арифметическая прогрессия:

Pn

 

i

i – число актов взаимодействия

Геометрическая прогрессии:

Pn

i

Чем более глубоко проходит процесс, тем более сильно будет изменяться ММ в процессе поликонденсации

3

Число реакционных центров в ходе процесса

Постоянно

В каждом акте число реакционных центров уменьшается на 2 (модель дубликации)

4

Исчезновение мономера

Мономер исчезает на глубоких стадиях, существует практически до конца реакции (небольшая часть мономера остается в конце).

Определяющим параметром можно принять степень превращения по мономеру.

Мономер исчезает на более ранних стадиях.

Определяющим параметром принимается сте-пень превращения по функциональ-ным группам:

, где N0 – общее число функциональных групп в начале процесса, Nt – число функциона-льных групп в момент времени t.

5

Образование полимера

Полимер образуется практически сразу:

Pn

t

Молекулярная масса продукта возрастает постепенно. Возникает необходимость проводить процесс до глубоких стадий, чтобы получить полимер с большой ММ.

Pn

10

 

2

q

6

Наличие катализатора или инициатора

Наличие катализаторов или инициаторов обязательно

Наличие катализаторов или инициаторов необязательно

Степень полимеризации в процессе поликонденсации определяется как отношение общего числа исходных молекул мономера к числу молекул, имеющихся в момент времени t:

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10