Наличие пыли в воздухе в ряде случаев недопустимо. Попадание пыли в проточную часть компрессора вызывает нарушение герметичности клапанов в насосе и выхлопе воздуха, в цилиндрах она смешивается с маслом и образует абразивную пасту (быстрый износ цилиндров, повышение их температуры). Фильтры отделяют частицы диаметром меньше 10 мкм. Содержание пыли в кубометре воздуха не должно превышать 1 мг.

6. ХОЛОДОСНАБЖЕНИЕ

6.1. Потребители искусственного холода на промпредприятиях

Одними из основных потребителей искусственного холода являются нефтяная, газовая и химическая промышленности. При этом потребность в холоде настолько велика, что расход энергии на выработку холода в некоторых случаях начинает сказываться на энергетическом балансе районов расположе­ния промышленных объектов [10].

Вследствие особенностей технологии в этих отраслях к используемому холодильному оборудованию предъявляют ряд требований. Холодильные машины должны иметь большую холодопроизводительность, высокую степень надежности, достаточно большой ресурс работы; допускать применение дешевых холодильных агентов (основные или побочные продукты на данном комплексе); обеспечивать возможность использования энергетических ресурсов, которыми располагает производство; быть максимально автоматизированными.

Наиболее полно перечисленным требованиям отвечают парокомпрессионные холодильные машины с центробежными и винтовыми компрессорами, а также абсорбционные холодильные машины, которые используют в качестве 'источников энергии теплоту технологических процессов, вторичные энергетические ресурсы или обратную воду теплоцентралей.

Например, в газовой промышленности широко применяют холод при подготовке газа к транспортировке и в процессе переработки нефтяных и природных газов газоконденсатных месторождений. Обработка газа перед транспортированием методом низкотемпературной сепарации и снижение температуры точки росы газа ниже минимальной температуры в газопроводе позволяют исключить образование в нем жидкости. Основное холодильное оборудование в этом случае - центробежные агрегаты, работающие на пропане, реже - на аммиаке.

Машиностроение и металлургия также являются потребителями искусственного холода. При низкотемпературной обработке сталей требуется осуществлять охлаждение до температур -30...-120°С. В верхнем интервале температур обычно используют парокомпрессионные машины двухступенчатого сжатия (до -60°С) и каскадные машины (до -80°С), работающие на холодильные камеры или шкафы. В нижнем интервале температур (до -120°С) находит широкое применение охлаждение с помощью жидкого азота.

Восстановление размеров изношенных измерительных инструментов (калибров, скоб) путем перевода остаточного аустенита в мартенсит при принудительном охлаждении позволяет удлинить срок их эксплуатации. При выполнении неподвижных посадок с помощью охлаждения охватываемой детали в ряде случаев удается добиться лучшего качества продукции и повышения производительности труда, чем при запрессовке с нагревом охватывающей детали.

Гибка труб с замороженной в них водой вместо обычно практикуемой (заполнение песком, канифолью и др.) дает хорошие результаты по овальности, радиусу загиба и чистоте внутренней поверхности труб.

В системах воздухоснабжения машиностроительных заводов для осушки сжатого воздуха применяется охлаждение его в специальных холодильных установках; крупными потребителями холода являются установки кондиционирования воздуха, холодильные испытательные камеры.

Широко используется холод в отраслях пищевой промышленности, сельского хозяйства, торговли и общественного питания. В заключение можно упомянуть такие сферы применения искусственного холода, как строительство, опреснение соленой воды, производство сухого и водного льда, искусственные ледяные катки, медицина.

6.2. Централизованный и децентрализованный способы производства искусственного холода

Холодильная установка (станция) представляет собой комплекс машин и аппаратов, используемых для получения и стабилизации в охлаждаемых объектах. температур ниже, чем в окружающей среде. Установка состоит из одной или нескольких холодильных машин, оборудования для отвода теплоты в окружающую среду, системы распределения и использования холода [10].

Централизованный способ производства искусственного холода предполагает применение единого комплекса машин и аппаратов. Установка может включать отдельные агрегатированные холодильные машины или представлять комбинацию холодильного оборудования, имеющего общие или взаимозаменяемые элементы, например блок конденсаторов, ресиверы, коммуникации рабочего тела холодильной машины. В этом случае экономически оправданным является использование системы охлаждения различных объектов промежуточным хладоносителем. Изолированность контура рабочего тела холодильной машины допускает применение аммиака как наиболее дешевого и термодинамически эффективного рабочего тела.

Для отвода теплоты в окружающую среду обычно применяется система оборотного водоснабжения, которая может быть общей с системой водоснабжения промышленного предприятия. В целом централизованный способ производства холода обеспечивает высокую степень надежности при меньшем резерве оборудования и меньшей численности обслуживающего персонала.

При небольших тепловых нагрузках, разбросанности объектов охлаждения, а также при непосредственном включении элементов холодильного цикла в схему основного производства целесообразно использование децентрализованного способа производства холода с непосредственным охлаждением объектов рабочим телом холодильной машины. При этом несколько снижаются энергетические затраты.

В последние годы разрабатываются комбинированные системы холодо - и теплоснабжения, состоящие из установок, которые могут работать как по холодильному, так и теплонасосному циклам. Опыт применения таких систем для тешюхладоснабжения зданий при использовании теплоты низкопотенциальных вторичных энергетических ресурсов показал их высокую экономичность.

6.3. Системы непосредственного охлаждения

В этих системах теплота от объектов отводится непосредственно холодильным агентом, протекающим в приборах охлаждения, располагаемых внутри объектов охлаждения и выполняющих одновременно роль испарителя холодильной машины. При этом агрегатное состояние холодильного агента в приборах охлаждения изменяется (он кипит).

Системы непосредственного охлаждения делятся на безнасосные и насосные - циркуляционные.

По способу подачи жидкого холодильного агента в охлаждающие приборы безнасосные системы охлаждения подразделяются на прямоточные и с. отделителем жидкости [10].

В прямоточных системах жидкий холодильный агент подается под действием разности давлений конденсации и кипения. Жидкий хладоагент по трубопроводу из конденсатора поступает к терморегулирующим вентилям, где дросселируется и направляется в охлаждающие приборы (испарители). Чувствительный патрон терморегулирующих вентилей укрепляется на всасывающем трубопроводе, по которому пар поступает к компрессору. Терморегулирующий вентиль автоматически изменяет подачу жидкости в зависимости от степени перегрева пара на входе в компрессор, обеспечивая тем самым точное дозирование подаваемой жидкости в каждый прибор охлаждения.

В системах охлаждения с отделителем жидкости используется напор, создаваемый столбом жидкости. Холодильный агент по трубопроводу поступает к регулирующему вентилю и далее направляется в отделитель жидкости. Сухой насыщенный пар отсасывается компрессором через трубопровод, а жидкий холодильный агент направляется в приборы охлаждения.

В этих схемах не обеспечивается равномерная и надежная подача жидкости в охлаждающие приборы. Во второй схеме большое влияние на температуру кипения оказывает высота столба жидкости. Безнасосные системы не исключают возможности возникновения влажного хода и гидравлических ударов в компрессоре, имеют большую вместимость по холодильному агенту и используются на холодильных установках малой и средней холодопроизводительности.

Насосно-циркуляционные системы применяются преимущественно на крупных холодильных установках. В этих системах жидкий холодильный агент подается в приборы охлаждения под давлением, создаваемым насосом. Применяется схема с нижней подачей холодильного агента в приборы охлаждения и вертикальным циркуляционным ресивером. Жидкий холодильный агент из конденсатора или ресивера по трубопроводу подается в циркуляционный ресивер через регулирующий вентиль. Образовавшийся при дросселировании пар отделяется в ресивере и через трубопровод отсасывается компрессором. Жидкий холодильный агент скапливается в нижней части ресивера и направляется к насосу, который подает жидкий холодильный агент в приборы охлаждения.

Насос подбирают по производительности, обеспечивающей в приборах кратность циркуляции 5-6. Это упрощает распределение жидкости по приборам и увеличивает интенсивность теплообмена. Важным является контроль за уровнем жидкости в ресивере: недостаток жидкости делает неустойчивой работу насоса, а ее избыток может привести к влажному ходу и гидравлическим ударам в компрессоре. Для контроля ресивер снабжают визуальными и дистанционными указателями уровня.

По сравнению с безнасосными, в насосно-циркуляционных системах более простое распределение жидкости между приборами охлаждения, меньшая загрязненность поверхностей теплообмена маслом, меньшая вместимость системы по холодильному агенту, большая безопасность работы и т. п.

6.4. Системы охлаждения с промежуточным хладоносителем

В этих системах теплота от объектов отводится промежуточной средой — жидким хладоносителем, протекающим в приборах охлаждения. Здесь он несколько нагревается без изменения агрегатного состояния, а в испарителе, где кипит холодильный агент, охлаждается. Циркуляция хладоносителя в приборах охлаждения осуществляется центробежными насосами. Такие системы охлаждения часто называют рассольными, так как в качестве хладоносителя чаще всего применяют рассол — водный раствор соли [10].

Системы с промежуточным хладоносителем делят на закрытые и открытые.

Закрытые системы охлаждения получили наибольшее распространение. Заполнение хладоносителем обеспечивается установкой в самой верхней части системы расширительного бака достаточной вместимости. Жидкий хладоагент подается в испаритель, образовавшийся пар отсасывается компрессором. Насос подает хладоноситель в испаритель, где он охлаждается, и затем в приборы охлаждения; подача регулируется задвижками. Избыточный хладоноситель выпускается в сливной бак. Для удаления воздуха из контура хладоносителя служат вентили.

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18