Коэффициент газоотдачи газовых пластов, как правило, выше коэффициента нефтеотдачи. В отличие от нефти газ слабо взаимодействует с поверхностью пористой среды, обладает незначительной вязкостью (в 100 раз и более меньшей, чем вязкость легких нефтей).
Вследствие большой упругости сжатый газ всегда обладает запасом энергии, необходимой для фильтрации в пористой среде. При этом пластовое давление может уменьшиться до значений, близких к атмосферному. Поэтому газоотдача газовых залежей может теоретически достигать высоких значений — 90 — 95 % и более. Например, Бенгойское месторождение в Чечне по состоянию на 2000 г. выработано на 98 %. Однако следует учитывать, что на газоотдачу влияет множество факторов и ее величина практически бывает ниже указанных значений.
Основной фактор, влияющий на величину газоотдачи — остаточное давление в залежи на конечной стадии ее разработки. Естественно, что наибольшая газоотдача газовых пластов может быть достигнута при снижении пластового давления до возможно минимального значения, при котором устьевые давления в скважинах будут близки или даже ниже атмосферного (отбор газа из скважин под вакуумом). Однако при этих условиях дебиты скважин становятся крайне низкими вследствие небольших перепадов давления (рил — р заб). Поэтому, исходя из технико-экономических соображений, разработку газовой залежи практически прекращают при давлении на устьях скважин, больших атмосферного. Конечный коэффициент газоотдачи при расчетах обычно принимают равным 0,7 —0,8.
Залежи газа, содержащие растворенные в газе жидкие углеводороды, называются газоконденсатными.
Историю открытия и освоения газоконденсатных месторождений небезынтересно проследить на примере США. По мере развития глубокого бурения и вскрытия пластов с аномально высоким давлением промышленники столкнулись с месторождениями, чрезвычайно богатыми газом, притом в отличие от чисто газовых месторождений продукция содержала значительное количество тяжелых углеводородов. Поиски нефти в этих районах положительных результатов не дали. Таким образом были обнаружены месторождения особого типа, названные впоследствии конденсатными.
Было установлено, что применение к ним известных законов газового состояния, в достаточной степени оправдавших себя (с практической точки зрения) в первый период времени, т. е. до вскрытия глубоких пластов, при новых условиях абсолютно неприемлемо и дает парадоксальные результаты. Незнание истинной природы этих месторождений, поведения газовых смесей в условиях пласта при столь высоких давлениях (обычно превышающих 100 атм или 10 МПа), законов ретроградной конденсации и игнорирование их после того, как эти законы стали известны, привело к значительным потерям топлива.
В 1936 г. В. Воуген предложил сайклинг-процесс при эксплуатации конденсатных месторождений, суть которого заключалась в обратной закачке в пласт осушенного газа. Газ с конденсатом из скважины поступает в конденсатную установку, в которой при соответствующем давлении и температуре выделяются жидкие компоненты. Затем сухой газ сжимается в компрессорах до давления, на 15 — 20 % превышающего давление в скважинах, и под этим давлением через нагнетательные скважины подается обратно в пласт. Это предложение нашло широкое применение в США и Канаде. Одним из первых месторождений, где был внедрен сайклинг-процесс, было газоконденсатное месторождение Ла Глория в округе Джим Веле (Техас).
Первой в нашей стране книгой, освещающей опыт США по эксплуатации газоконденсатных месторождений, была монография «Теория и практика эксплуатации конденсатных месторождений», изданная в Баку в 1944 г. Ценность этой книги заключалась в том, что она знакомила работников нефтегазовой промышленности с особенностями эксплуатации конденсатных месторождений США. Одновременно автор предполагал наличие конденсатных месторождений в нашей стране (тогда — СССР). Действительно, в начале 1955 г. в 25 км юго-западнее Баку было открыто первое в стране газоконденсатное месторождение Карадаг.
Согласно литературным источникам, общее число выявленных газоконденсатных месторождений на земном шаре приблизилось к нескольким тысячам, из них примерно 10 — 12 % приходится на долю России. Газоконденсатные месторождения и залежи установлены почти во всех нефтегазоносных провинциях и областях, охватывающих различные по возрасту и характеру складчатости тектонические мегаэлементы.
Содержание конденсата в газе зависит от состава газа, пластового давления и температуры. В одних залежах конденсата в 1 м3 содержится всего лишь несколько кубических сантиметров, в других — до нескольких сот кубических сантиметров. В основном содержание конденсата в газе находится в пределах 40 — 600 см3/м3.
Газоконденсатные месторождения, залегающие на глубинах свыше 1500 м, характеризуются тем, что содержащиеся в них углеводородные смеси находятся обычно в однофазном состоянии — тяжелые углеводороды полностью растворены в массе легких газообразных компонентов. При разработке газоконденсатного месторождения по мере падения давления из газа начинает выделяться конденсат. В первую очередь конденсируются наиболее тяжелые компоненты, а затем — все более легкие. Давление, при котором начинается выделение из газа конденсата, называется давлением начала конденсации.
Конденсат может выделяться как на поверхности, так и в пласте при снижении давления. В последнем случае конденсат впитывается породой пласта, и значительная часть его может остаться в пласте безвозвратно. Поэтому газоконденсатные месторождения следует разрабатывать при забойных давлениях на забое скважин, больших давления начала конденсации, по круговой схеме сайклинг-процесса.
Естественная пластовая энергия в большинстве случаев не обеспечивает высоких темпов и достаточной полноты отбора нефти из залежи. Даже при наиболее эффективном водонапорном режиме дренирования в процессе разработки залежи давление обычно снижается, что указывает на истощение пластовой энергии. Это объясняется тем, что объем поступающей в нефтяную часть залежи пластовой воды обычно меньше объема извлекаемых из пласта нефти и газа, вследствие чего пластовое давление начинает падать.
Искусственное поддержание пластовой энергии — наиболее эффективное мероприятие по увеличению темпа отбора нефти из залежи и получению повышенных коэффициентов
| Рис. 3.1. Схема законтурного заводнения: 1,2, 3 — соответственно нефтяные, нагнетательные и контрольные скважины; 4, 5 —внутренний и внешний контуры нефтеносности |
нефтеотдачи, характерных для напорных режимов разработки [9]. В большинстве случаев поддержание пластовой энергии осуществляется заводнением пластов. Различают следующие виды заводнения: законтурное и внутриконтурное.
При законтурном заводнении воду закачивают в законтурные водоносные зоны залежи (рис. 3.1). Воду закачивают в пласт через нагнетательные скважины, расположенные за внешним контуром нефтеносности по периметру залежи. Эксплуатационные нефтяные скважины располагаются внутри контура нефтеносности рядами, параллельными контуру. В результате заводнения создается искусственный контур питания залежи водой, приближенный к зоне разработки пласта, что создает благоприятные условия для повышения отбора нефти из него и, следовательно, для интенсификации разработки залежи. В этом случае повышенное давление, создаваемое на линии нагнетательных скважин, активно воздействует только на два-четыре близлежащих ряда эксплуатационных скважин. Если площадь нефтяной залежи значительная по размерам, то для интенсификации ее разработки применяют внутриконтурное заводнение. Сущность этого метода состоит в искусственном «разрезании» месторождения на отдельные площади или блоки путем закачки воды в ряды нагнетательных скважин, которые располагаются вдоль контура нефтеносности. Таким образом создаются близкие к эксплуатационным скважинам искусственные контуры питания, а каждая площадь разрабатывается самостоятельно (рис. 3.2, а). Внутриконтурное заводнение впервые было осуществлено на Ромашкинском нефтяном месторождении в Татарии, которое разрезано рядами нагнетательными скважинами на 20 с лишним эксплуатационных площадей.
| Рис. 3.2. Схемы внутриконтурного заводнения: 1,2 — нагнетательные и эксплуатационные скважины соответственно |
В ряде случаев для интенсификации разработки применяют комбинацию законтурного заводнения с внутриконтурным (центральным) или очаговым заводнением (рис. 3.2, б и в соответственно).
Для поддержания пластового давления в нефтяной залежи на заданном уровне объем закачиваемой воды в процессе заводнения должен равняться объему извлекаемых из залежи нефти, газа и пластовой воды. Во время проектирования процесса заводнения пласта учитываются возможные потери воды из-за ее утечки в периферийные зоны пласта. При внутриконтурном заводнении возможен уход части нагнетаемой воды в верхние или нижние пласты через неплотности в цементном кольце отдельных скважин.
Практикой установлено, что для поддержания пластового давления на одном уровне при законтурном или внутриконтурном заводнении в пласт следует закачивать 1,6 — 2,0 м3 воды на каждую тонну извлекаемой нефти. При извлечении вместе с нефтью пластовой воды учитывается и ее объем. Если требуется повысить пластовое давление, то объем нагнетаемой воды увеличивают.
Число нагнетательных скважин при заводнении пластов определяют делением заданного объема закачиваемой воды на среднюю поглотительную способность одной скважины при оптимальном давлении нагнетания.
На месторождениях, разрабатываемых при помощи законтурного заводнения, высокий уровень текущей добычи нефти сохраняется длительное время и только на последних этапах разработки снижается до минимума.
При заводнении нефтяных пластов в качестве рабочего агента могут быть использованы воды как поверхностных водоемов (реки, моря, озера), так и глубинных водоносных горизонтов, а также пластовые воды, извлекаемые из недр вместе с нефтью. Для заводнения продуктивных пластов многих нефтяных месторождений Западной Сибири используются подземные воды водоносных отложений, залегающих выше продуктивных горизонтов. Дебиты скважин, пробуренных на эти горизонты, достигают 3000 — 4000 м3/сут.
Вода, предназначенная для закачки в пласт, должна быть по возможности чистой, не содержать больших количеств механических примесей, соединений железа, сероводорода, углекислоты, нефти, а также органических примесей (бактерии и водоросли). Схемы водоснабжения для заводнения пластов могут отличаться друг от друга в зависимости от местных условий каждого района. Однако любая схема, когда используются поверхностные водоемы в качестве источников водоснабжения, должна включать следующие основные элементы:
1) водозаборные сооружения, предназначенные для забора воды из источников и подачи ее в водопроводную сеть или на водоочистную установку;
2) водоочистную установку (если требуется очистка воды);
3) сеть магистральных и разводящих водопроводов;
4) насосные станции для подачи воды в водопроводную сеть и закачки ее в нагнетательные скважины;
5) нагнетательные скважины.
Для непосредственной закачки в пласт воды через нагнетательные скважины предназначены кустовые насосные станции. Они оборудованы мощными многоступенчатыми центробежными насосами с подачей до 150 м3/ч и развиваемым давлением до 10 — 20 МПа. В зависимости от числа установленных насосов (с учетом их резерва) рабочая подача одной кустовой станции составляет 4—10 тыс. м3 воды в сутки.
Вода распределяется по нагнетательным скважинам через водораспределительные батареи, устанавливаемые на каждой кустовой станции. Через батареи регулируется подача воды в каждую скважину; установленные на них диафрагменные счетчики замеряют и записывают количество закачиваемой воды.
Рассмотрим следующий способ искусственного поддержания пластового давления — нагнетание в пласт газа. В залежах нефти с газовой шапкой или большими углами падения пород поддержание давления достигается нагнетанием газа или воздуха в повышенную ее часть (газовую шапку). Для осуществления этого метода с начала разработки пласта требуется строительство мощных компрессорных станций с компрессорами, рассчитанными на высокое давление, так как давление нагнетания должно быть на 10 — 20 % выше пластового. Сооружение таких компрессорных станций со всем подсобным хозяйством связано с затратой значительных капиталовложений и является весьма трудоемкой работой. Поэтому в большинстве случаев ограничиваются поддержанием пластового давления на уровне, который может быть обеспечен давлением стандартных, выпускаемых промышленностью компрессоров (5—10 МПа), т. е. закачку газа начинают на более поздней стадии его разработки.
Газ или воздух обычно нагнетается в скважины, расположенные в присводовой части залежи. При этом в качестве рабочего агента лучше всего применять естественный нефтяной газ, но если промысел не располагает нужным количеством газа, то при отсутствии в пласте газовой шапки можно в сводовую часть залежи нагнетать также и воздух. Нагнетание воздуха в газовую шапку нежелательно, так как это приводит к значительному ухудшению свойств газа. Количество нагнетаемого в скважины газа или воздуха оценивается опытным определением поглотительной способности скважин. Практически можно считать нормальным, если в каждую нагнетательную скважину закачивается от 10 до 25 тыс. м3 газа в сутки.
Рассмотрим метод площадного заводнения. Его можно рассматривать как вторичный метод поддержания пластового давления. Если нефтяная залежь разрабатывается без поддержания пластового давления, то первоначальные запасы пластовой энергии быстро расходуются, из-за чего дебиты скважин значительно снижаются. При этом в залежи остаются огромные количества нефти.
Для повышения текущей добычи нефти из таких «истощенных» залежей и увеличения суммарной нефтеотдачи применяют нагнетание в пласт воды или газа, но в меньших объемах и при меньших давлениях, чем при заводнении или при нагнетании в пласт газа. Нагнетание в пласт воды или газа осуществляется чаще всего по всей площади нефтяной залежи.
Нагнетательные скважины располагают непосредственно в нефтяной зоне, между эксплуатационными скважинами. Обычно в качестве нагнетательных используют нефтяные скважины, выбывшие из эксплуатации.
Регулирование процесса площадного заводнения или площадной закачки газа в пласт преследует цель равномерного проталкивания нефти к забоям эксплуатационных скважин. Это достигается ограничением закачки воды или газа в скважины, являющиеся очагами их прорывов по отдельным направлениям, ограничением отбора нефти из эксплуатационных скважин или, наоборот, путем увеличения закачанных объемов воды или газа и усиленного отбора нефти из отдельных скважин или групп скважин. Для получения большего эффекта скважины (нагнетательные и нефтяные) желательно размещать по правильным геометрическим сеткам.
Применение искусственных методов воздействия на пласты (законтурное и внутриконтурное заводнение, закачка в пласт воздуха или газа) позволяет восполнять пластовую энергию, расходуемую в процессе разработки нефтяных залежей, значительно сокращать сроки разработки залежей за счет более интенсивных темпов отбора нефти и в какой-то мере повышать степень использования геологических запасов нефти, содержащихся в недрах. Но следует учитывать, что конечная нефтеотдача пластов при любых известных методах воздействия на них даже в лабораторных условиях редко превышает 70 — 80 %. В недрах всегда остается значительное количество нефти, которая удерживается в порах пласта капиллярными силами или находится в «целиках» — в зонах пласта, не затронутых воздействием движущих сил. Чем больше вязкость пластовой нефти и меньше поровые каналы, тем сильнее проявляются удерживающие нефть капиллярные силы и больше в недрах остается нефти.
В современных условиях при проектировании процесса разработки нефтяных месторождений коэффициент конечной нефтеотдачи пластов даже в условиях применения методов поддержания пластовых давлений в большинстве случаев принимают в пределах 50 — 60 %. Поэтому в последнее время значительно усилены работы по нахождению путей повышения конечной нефтеотдачи пластов.
Известно несколько методов вытеснения нефти из пластов, обеспечивающих повышение их суммарной нефтеотдачи.
1. Закачка в пласт воды, обработанной ПАВ. Поверхностно-активные вещества (ПАВ) применяются во многих отраслях промышленности как моющие и пенообразующие средства, снижающие поверхностное натяжение на жидкой или твердой поверхности раздела фаз вследствие положительной адсорбции этих веществ на поверхности раздела.
Концентрация ПАВ в поверхностном слое в десятки тысяч раз превышает концентрацию его в объеме раствора. Благодаря этому процессами, происходящими в поверхностных слоях, можно управлять при ничтожно малых концентрациях ПАВ в растворе. Так, концентрация некоторых ПАВ в воде при заводнении пластов не превышает 0,05 %.
При закачке в пласт воды с добавкой ПАВ в нефтяном коллекторе изменяются поверхностно-молекулярные свойства полиминеральной среды — резко снижается поверхностное натяжение на границе нефти с водой или же на границе нефти с породой. Значительное снижение поверхностного натяжения на границах раздела фаз — одна из причин более полного вытеснения нефти из пористой среды растворами ПАВ, которые способствуют дроблению глобул нефти, охваченных водой, снижают необходимый перепад давления для фильтрации жидкостей в пористой среде и улучшают моющие свойства воды.
2. Вытеснение нефти оторочкой загущенной воды. Вытеснение нефти из неоднородного коллектора может быть эффективным, если применить воду повышенной вязкости. При этом создаются условия для более равномерного продвижения водонефтяного контакта и повышение конечной водоотдачи пласта. Для загущения воды применяют различные водорастворимые полимеры, из которых наиболее хорошие результаты получили после использования гидролизованного полиакриламида (ПАА). Этот полимер сравнительно хорошо растворяется в воде и при небольших концентрациях его в воде образуются вязкие растворы.
При практическом осуществлении процесса вытеснения нефти наиболее рационально закачивать на первой стадии небольшое количество загущенной воды для создания в пласте оторочки. Далее следует закачивать обычную воду, которая проталкивает оторочку в глубь пласта.
В качестве рабочего агента повышенной вязкости можно использовать пены, приготовленные на аэрированной воде с добавкой 0,2 — 1,0 % пенообразующих веществ. Вязкость пены в 5 — 10 раз больше вязкости воды. Оторочка из пены проталкивается в глубь пласта водой.
3. Закачка в пласт углекислоты. Для увеличения нефтеотдачи в пласт нагнетается углекислый газ в сжиженном виде и проталкивается далее карбонизированной водой. Также эффективно вытеснение нефти непосредственно водными растворами углекислоты. Повышение нефтеотдачи при вытеснении нефти углекислотой объясняется рядом причин. Происходит взаимное растворение углекислоты в нефти и углеводородов в жидком СО2, что сопровождается уменьшением вязкости нефти, возрастанием ее объема, снижением поверхностного натяжения на границе с водой.
4. Нагнетание в пласт теплоносителя. В качестве теплоносителя для нагнетания в пласт обычно используют горячую воду и водяной пар.
Интенсификация добычи нефти и увеличение нефтеотдачи пластов при нагнетании теплоносителей достигается за счет снижения вязкости нефти и теплового расширения пластовой нефти и скелета пласта.
Для более рационального использования тепла русскими учеными на основе теоретических и лабораторных исследований предложена следующая схема процесса нагнетания в пласт теплоносителя. Вначале в пласт в течение определенного времени нагнетают горячий агент. После образования в пласте нагретой зоны значительных размеров прекращают нагнетать горячий агент и начинают нагнетать холодный. При поступлении в нагретую зону холодный агент нагревается (т. е. превращается в теплоноситель) и во время дальнейшего движения прогревает более удаленные участки пласта. Пористая среда (порода-коллектор) действует как теплообменник с большой поверхностью теплообмена. По мере остывания первоначально нагретого участка пласта некоторая часть тепла постепенно возвращается обратно в пласт. Таким образом, тепло, аккумулированное в пласте (а также частично в окружающих его породах), реализуется для нагревания рабочего агента непосредственно в пластовых условиях.
5. Внутрипластовое горение. При этом методе после зажигания тем или иным способом нефти у забоя зажигательной (нагнетательной) скважины в пласте создается движущийся очаг горения за счет постоянного нагнетания с поверхности воздуха или смеси воздуха с природным газом. Образующиеся впереди фронта горения пары нефти, а также нагретая нефть с пониженной вязкостью движутся к эксплуатационным скважинам и извлекаются через них на поверхность.
6. Вытеснение нефти из пласта растворителями. Частичное или полное устранение отрицательного влияния на нефтеотдачу молекулярно-поверхностных сил может быть достигнуто путем создания в пласте условий, при которых вытесняемая фаза (нефть) полностью смешивалась бы с вытесняющей фазой (растворитель, газ) без образования границы раздела между ними. Это возможно лишь при условии, когда вытесняемая и вытесняющая фазы взаимно растворимы и образуют однофазную систему. В качестве вытесняющей фазы могут быть использованы пропан, бутан, пропан-бутановая смесь, газ высокого давления. При нагнетании в пласт при определенном давлении какого-либо из этих компонентов происходит их смешивание с нефтью и полное взаимное растворение в нефти, исчезают границы раздела между вытесняющей и вытесняемой средами, ослабляется прилипание нефти к стенкам пор.
Повышение газоотдачи газовых пластов достигается за счет режимных мероприятий и прежде всего своевременной изоляцией прорвавшихся вод по отдельным пропласткам. Кроме того, повышение газоотдачи может быть достигнуто путем доведения пластового давления до минимально возможного — отбор газа из скважин под вакуумом.
Повышение конденсатоотдачи в газоконденсатных месторождениях может быть достигнуто путем поддержания пластового давления, т. е. закачкой сухого газа в разрабатываемый пласт.
В зависимости от значения пластового давления, физических свойств нефти, содержания в ней воды и газа, проницаемости пород пласта и других факторов нефтяные скважины эксплуатируются различными способами. Все известные способы эксплуатации скважин подразделяются на следующие группы:
1) фонтанная, когда нефть извлекается из скважин самоизливом;
2) с помощью энергии сжатого газа, вводимого в скважину извне;
3) насосная — извлечение нефти с помощью насосов различных типов.
Две последние группы способов эксплуатации условно принято называть механизированными, хотя этот термин в отдельных случаях не отражает истинный процесс.
Все газовые скважины эксплуатируются только фонтанным способом, т. е. при любом пластовом давлении механизмов для извлечения газа из пласта не применяют.
Способ эксплуатации скважин, при котором подъем нефти или смеси нефти с газом от забоя на поверхность осуществляется за счет природной энергии, называется фонтанным.
Если давление столба жидкости, заполняющей скважину, меньше пластового давления и призабойная зона не загрязнена (ствол скважины сообщается с пластом), то жидкость будет переливаться через устье скважины, т. е. фонтанировать. Фонтанирование может происходить под влиянием гидростатического напора или энергии расширяющегося газа, или того и другого вместе.
В большинстве случаев главную роль в фонтанировании скважин играет газ, содержащийся вместе с нефтью в пласте. Это справедливо даже для месторождений с явно выраженным водонапорным режимом, когда газ в пластовых условиях полностью растворен в нефти и в пласте движется однородная жидкость. При эксплуатации скважины, пробуренной на такой пласт, свободный газ из нефти начинает выделяться лишь в подъемных трубах и на такой глубине, где давление ниже давления насыщения нефти газом. В этом случае подъем нефти в скважине будет происходить за счет гидростатического напора и энергии сжатого газа, проявляющейся только в верхней части скважины.
На глубине, соответствующей давлению насыщения нефти газом, последний начинает выделяться из нефти в виде мельчайших пузырьков. По мере продвижения вверх пузырьки газа испытывают все меньшее давление, в результате чего их объем увеличивается, а плотность смеси жидкости и газа начинает снижаться. Общее давление столба газожидкостной смеси на забой скважины становится меньше пластового, что вызывает самоизлив нефти, т. е. фонтанирование скважины.
При всех способах эксплуатации, в том числе и при фонтанном, подъем жидкости и газа на поверхность происходит по трубам небольшого диаметра, спускаемым в скважины перед началом их эксплуатации. Эти трубы называются насосно-компрессорными (НКТ). В зависимости от способа эксплуатации их также называют фонтанными, компрессорными, насосными, а также подъемными (лифтовыми).
Общероссийским стандартом предусмотрено изготовление насосно-компрессорных труб следующих условных диаметров (по внешнему диаметру): 33, 42, 48, 60, 73, 89, 104 и 114 мм с толщиной стенок от 3,5 до 7 мм. Длина одной трубы составляет 5 — 8,5 м (в среднем 8 м). Трубы изготавливаются бесшовными, т. е. цельнотянутыми из сталей высокопрочных марок. На концах каждой трубы нарезают одинаковую резьбу. На один ее конец на заводе навинчивают муфту, чтобы при свинчивании трубы со свободным концом другой трубы муфта не отвинчивалась.
При фонтанной эксплуатации в большинстве случаев применяют насосно-компрессорные трубы диаметрами 60, 73 и 89 мм, а для высокодебитных скважин — диаметрами 102 и 114 мм. Трубы обычно спускают до фильтра.
Применение подъемных труб при фонтанной эксплуатации диктуется следующими соображениями.
1. Облегчаются работы по освоению скважины. Два самостоятельных канала в ней (подъемные трубы и затрубное пространство) позволяют заменять глинистый раствор в стволе более легкой жидкостью (вода, нефть). Кроме того, подъемные трубы позволяют осваивать скважину при помощи компрессора.
2. Рационально используется энергия расширяющегося газа. При подъеме смеси по каналу с незначительной площадью поперечного сечения (подъемные трубы) резко сокращаются потери нефти при стекании ее вниз по стенкам труб и уменьшаются потери на трение в результате скольжения газа. Кроме того, из нефти выделяется меньшее количество газа, чем при фонтанировании через эксплуатационную колонну, а следовательно, в большей степени снижается удельный вес газа. Поэтому фонтанирование может происходить при небольшом пластовом давлении.
3. Использование подъемных труб самого малого диаметра — один из способов продления фонтанирования малодебитных скважин.
4. Предотвращается образование песчаных пробок на забое скважин, так как большие скорости газонефтяной струи в трубах меньшего сечения обеспечивает полный вынос на поверхность песка из скважины.
5. Облегчается борьба с отложениями парафина, образующимися при добыче нефтей, в которых содержится значительное количество парафина.
Устье фонтанных скважин оборудуют прочной стальной арматурой, состоящей из трубной головки фонтанной елки. Трубная головка предназначена для подвески фонтанных труб и герметизации межтрубного пространства, фонтанная елка — для направления газожидкостной струи в выкидные линии, а также для регулирования и контроля работы скважин. Так как фонтанные елки по условиям эксплуатации относят к одному из наиболее ответственных видов промыслового оборудования, их испытывают на давление, вдвое превышающее паспортную величину.
КЛАССИФИКАЦИЯ ФОНТАННОЙ АРМАТУРЫ
Фонтанную арматуру различают по конструктивным и прочностным признакам [9, 34]:
1) по рабочему давлению — отечественные заводы выпускают фонтанную арматуру, рассчитанную на давление от 7 до 105 МПа. Арматуру, рассчитанную на давление 105 МПа, можно использовать для сверхглубоких скважин или скважин с аномально высоким пластовым давлением (АВПД). Для фонтанных нефтяных скважин в основном применяют арматуру, рассчитанную на рабочее давление от 7 до 35 МПа;
2) по размерам проходного поперечного сечения ствола — от 50 до 150 мм. Фонтанная арматура с диаметрами ствола, равными 100 и 150 мм, предусмотрена для высокодебитных нефтяных и газовых скважин;
3) по конструкции фонтанной елки — крестовые и тройниковые. На рис. 3.3 представлены схемы арматуры. Боковые отводы в этих видах арматуры при помощи выкидных линий соединяются со сборными и замерными установками;
4) по числу спускаемых в скважину рядов труб — однорядные и двухрядные. На рис. 3.3 показана фонтанная арматура для однорядного подъемника;
5) по виду запорных устройств — с задвижками и кранами. Задвижки применяют на нефтяных скважинах, а краны — на газовых.
Освоение и пуск в эксплуатацию фонтанной скважины проводится при установленной на ее устье фонтанной арматуры одним из следующих способов:
промывка — замена жидкости, заполняющей ствол скважины после бурения, на более легкую, например, глинистого раствора на воду, воды — на нефть;
продавливание сжатым газом (воздухом) — насыщение заполняющей скважину жидкости газом или воздухом, нагнетаемым с поверхности;
аэрация — замена жидкости в скважине на газожидкостную смесь.
При промывке скважины для вызова фонтана жидкость нагнетают с помощью насоса в межтрубное пространство, при этом более тяжелая жидкость, заполняющая скважину (глинистый раствор), вытесняется на поверхность по фонтанным трубам. При значительном пластовом давлении скважина может фонтанировать даже после неполной замены глинистого раствора водой или нефтью.
|
Рис. 3.3. Виды фонтанной арматуры: |
а — крестовая; б — тройниковая; / — манометр; 2 — трехходовой кран; 3,11 — верхний и нижний буфера; 4 — тройник; 5 — штуцер; 6 — запорное устройство (боковая задвижка, кран); 7 — запорное устройство (стволовая задвижка, кран); 8 — переводник; 9 — крестовик; 10 — колонный фланец; 12 — крестовик елки |
Сущность продавки скважины сжатым воздухом заключается в нагнетании последнего в кольцевое пространство между фонтанными трубами и эксплуатационной колонной. Сжатый воздух вытесняет жидкость, заполняющую скважину, через фонтанные трубы наружу и одновременно, поступая в эти трубы через специальные (пусковые) клапаны, установленные на расчетной глубине, газирует жидкость и тем самым уменьшает плотность. Для продавливания скважин применяют специальные компрессоры, рассчитанные на давление 8 — 20 МПа. Значительное понижение плотности жидкости в скважине может быть достигнуто при одновременном нагнетании в нее воды (нефти) и газа (воздуха). В этом случае к скважине, кроме водяной (нефтяной), линии от насоса, подводят также газовую (воздушную) линию от компрессора. Жидкость и газ (воздух) смешиваются в смесителе (эжекторе), после чего газожидкостная смесь нагнетается в затрубное пространство скважины. При замене этой смесью жидкости, находящейся в скважине, давление на забой снижается, и нефть начинает поступать из пласта в скважину. Нагнетание смеси прекращается, как только скважина начинает устойчиво фонтанировать.
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |






