Отделившаяся от нефти в отстойниках 13 вода направля­ется самотеком в установку очистки воды (УОВ) 26, из кото­рой она забирается двумя насосами. Насос 27 подает эту воду на блочную кустовую насосную станцию (БКНС) 30, откуда она транспортируется с помощью насосов высокого давления в нагнетательные скважины (показаны на схеме в виде черных точек), а насос 28 забирает воду из УОВ и по водоводу 29 подает ее в поток эмульсии перед сепаратором 5, расположенным на БДНС. Это делается для того, чтобы горя­чая вода, содержащая ПАВ, способствовала предварительно­му разрушению эмульсии непосредственно в сепараторе 5.

Для месторождений, меньших по площади, обычно БДНС не строится и вся продукция скважин транспортируется на УПН под давлением на устьях скважин.

Подпись:Как видно из схемы, нефть нигде не контактирует с возду­хом и потери ее от испарения сведены до минимума (0,2 %).

Начальный период разработки нефтяных месторождений, как правило, характеризуется безводной добычей нефти из фонтанирующих скважин. Однако на каждом месторождении наступает момент, когда из пласта вместе с нефтью поступа­ет вода сначала в малых, а затем все в больших количествах. Примерно 80 % всей нефти добывается в обводненном состо­янии, причем на месторождениях Среднего Приобья обвод­ненность добытой нефти составляет 93 %. Пластовые воды, поступающие из скважин различных месторождений, могут значительно отличаться по составу и концентрации раство­ренных в них минеральных солей, содержанию газа и нали­чию микроорганизмов. При извлечении смеси нефти с пластовой водой образуется эмульсия, которую следует рассмат­ривать как механическую смесь двух нерастворимых жидко­стей (нефти и воды), одна из которых распределяется в объе­ме другой в виде капель различных размеров. Наличие воды в нефти приводит к удорожанию транспорта в связи с возра­стающими объемами транспортируемой жидкости и увеличе­нием ее вязкости. Присутствие в нефти даже 0,1 % воды приводит к ее интенсивному вспениванию в ректификацион­ных колоннах нефтеперерабатывающих заводов (НПЗ), что нарушает технологические режимы переработки и, кроме того, загрязняет конденсационную аппаратуру.

Легкие фракции нефти (углеводородные газы от этана до пентана) являются ценным сырьем, из которого получают такие продукты, как спирты, синтетический каучук, раство­рители, жидкие моторные топлива, удобрения, искусственное волокно и другие продукты органического синтеза, широко применяемые в промышленности. Поэтому необходимо стре­миться не только к снижению потерь легких фракций из нефти, но и к сохранению всех углеводородов, извлекаемых из нефтеносного горизонта, для последующей их переработ­ки [5,11, 37].

Качество вырабатываемой продукции во многом зависит от качества исходного сырья, т. е. нефти. Если в недавнем прошлом на технологические установки НПЗ поступала нефть с содержанием минеральных солей 100 — 500 мг/л, то в насто­ящее время требуется нефть с более глубоким обессоливанием, а часто перед переработкой нефти приходится полностью удалять из нее соли.

Наличие в нефти механических примесей (частиц песка и глины) вызывает абразивный износ трубопроводов, нефтепе­рекачивающего оборудования, затрудняет переработку нефти, повышает зольность мазутов и гудронов, образует отложения в печах, теплообменниках, что приводит к уменьшению ко­эффициента теплопередачи и быстрому выходу их из строя. Механические примеси способствуют образованию трудно­разделимых эмульсий. Наличие минеральных солей в виде кристаллов в нефти и раствора в воде вызывает усиленную коррозию металла нефтеперерабатывающего оборудования и трубопроводов, увеличивает стойкость эмульсий, затрудняет переработку нефти.

При соответствующих условиях часть хлористого магния и хлористого кальция, находящихся в пластовой воде, гидролизуется с образованием соляной кислоты. В результате разло­жения сернистых соединений при переработке нефти образуется сероводород, который в присутствии воды вызывает усиленную коррозию металла. Хлористый водород, раство­ренный в воде, также разъедает металл труб и оборудования. Особенно интенсивно идет коррозия при наличии в воде сероводорода и соляной кислоты.

Причины, приведенные выше, указывают на необходимость подготовки нефти к транспорту. Собственно подготовка не­фти включает: обезвоживание и обессоливание нефти и пол­ное и частичное ее разгазирование.

Качество подготовки нефти к транспорту регламентирует ГОСТ. Основные требования ГОСТа приведены в табл. 4.1.

Таблица 4.1 Показатели качества нефти

Показатель

Группа нефти

I

II

III

Содержание воды, %, не более

0,5

1

1

Содержание хлористых солей, мг/л, не более

100

300

1800

Содержание механических примесей, %, не более

0,05

0,05

0,05

Давление насыщенных паров при темпе­ратуре нефти в пункте сдачи, Па, не более

66 650

66 650

66 650

Для правильного выбора способов обезвоживания нефти (деэмульсации) необходимо знать механизм образования эмуль­сий и их свойства. Образование эмульсий уже начинается при движении нефти к устью скважины и продолжается при дальнейшем движении по промысловым коммуникациям, т. е. эмульсии образуются там, где происходит непрерывное пере­мешивание нефти и воды. Интенсивность образования эмуль­сий в скважине во многом зависит от способа добычи нефти, которая, в свою очередь, определяется характером месторож­дения, периодом его эксплуатации и физико-химическими свойствами нефти. В настоящее время любое месторождение эксплуатируется одним из известных способов: фонтанным, компрессорным или глубинно-насосным.

При фонтанном способе, который характерен для началь­ного периода эксплуатации залежи нефти, происходит интенсивный отбор жидкости из скважины. Интенсивность пере­мешивания нефти с водой в подъемных трубах скважины увеличивается из-за выделения растворенных газов, что при­водит к образованию эмульсий уже на ранней стадии движе­ния смеси нефти с водой.

В компрессорных скважинах причины образования эмуль­сий те же, что и при фонтанной добыче. Особенно отрица­тельно влияет воздух, закачиваемый иногда вместо газа в скважину, который окисляет часть тяжелых углеводородов с образованием асфальтосмолистых веществ.

При глубинно-насосной добыче нефти эмульгирование про­исходит в клапанных коробках, цилиндре насоса, подъемных трубах при возвратно-поступательном движении насосных штанг. При использовании электропогружных насосов вода с нефтью перемешивается на рабочих колесах насоса и в подъем­ных трубах.

В эмульсиях принято различать две фазы — внутреннюю и внешнюю. Внешняя фаза — это жидкость, в которой размещаются мельчайшие капли другой жидкости. Внешнюю фазу называют также дисперсионной средой, а внутренняя фаза — это жидкость, находящаяся в виде мелких капель в дисперсионной среде [9, 22].

По характеру внешней среды и внутренней фазы различа­ют эмульсии двух типов: нефть в воде (н/в) и вода в нефти (в/н). Тип образующейся эмульсии в основном зависит от соотношения объемов двух фаз; внешней средой стремится стать та жидкость, объем которой больше. На практике наи­более часто встречаются эмульсии типа в/н (95 %). Реже, чем эмульсии типа н/в, встречаются эмульсии третьего типа — вода в нефти в воде.

Нефтяные эмульсии характеризуются вязкостью, стойкос­тью, плотностью, электрическими свойствами и дисперсностью.

Вязкость нефтяной эмульсии изменяется в широких диапа­зонах и зависит от собственной вязкости нефти, температуры образования эмульсии, соотношения количеств нефти и воды.

Электропроводность чистых нефтей колеблется отдоОм/м, а электропроводность воды в чистом виде — отдоОм/м, т. е. смесь из этих двух компонентов является хорошим диэлектриком. Однако при растворении в воде незначительного количества солей или кислот резко повышается электропроводность воды, а следовательно, и эмуль­сии. Электропроводность нефтяных эмульсий увеличивается в несколько раз при нахождении их в электрическом поле. Это объясняется различной диэлектрической проницаемостью воды и нефти и ориентацией капель воды в нефти вдоль силовых линий электрического поля.

Стойкость (устойчивость) эмульсий, т. е. способность в течение определенного времени не разделяться на составные компоненты, является наиболее важным показателем для водонефтяных смесей. Чем выше устойчивость эмульсий, тем труднее процесс деэмульсации. Нефтяные эмульсии обладают различной стойкостью. При прочих равных условиях устой­чивость эмульсий тем выше, чем больше дисперсность. В большой степени устойчивость эмульсий зависит от состава компонентов, входящих в защитную оболочку, которая обра­зуется на поверхности капли.

На поверхности капли также адсорбируются, покрывая ее бронирующим слоем, стабилизирующие вещества, называемые эмульгаторами. В дальнейшем этот слой препятствует слиянию капель, т. е. затрудняет деэмульсацию и способствует образо­ванию стойкой эмульсии. В процессе существования эмульсий происходит упрочнение бронирующей оболочки, так называе­мое «старение» эмульсии. Установлено, что поверхностные слои обладают аномальной вязкостью и со временем вязкость бро­нирующего слоя возрастает в десятки раз. Так, после суток формирования поверхностные слои эмульсий приобретали вяз­кость, соответствующую вязкости таких веществ, как битумы, которые практически по своим реологическим (текучим) свой­ствам приближаются к твердым веществам.

Наличие электрических зарядов на поверхности глобул эмуль­сий увеличивает их стойкость. Чем больше поверхностный заряд капель, тем труднее их слияние и тем выше стойкость эмульсии. В статических условиях дисперсная система элект­рически уравновешена, что повышает стойкость эмульсии.

С повышением температуры уменьшаются вязкость нефти и механическая прочность бронирующего слоя, что снижает устойчивость эмульсии. Особенно резко прослеживается вли­яние температуры на устойчивость эмульсий высокопарафинистых нефтей. С понижением температуры в нефти выпада­ют кристаллы парафина, которые легко адсорбируются на поверхности капель воды, создавая высокопрочную брониру­ющую оболочку.

Существенно влияет на устойчивость нефтяных эмульсий состав пластовой воды. Пластовые воды разнообразны по химическому составу, но все они могут быть разделены на две основные группы: первая группа — жесткая вода, кото­рая содержит хлоркальциевые или хлоркальциево-магниевые соединения; вторая группа — щелочная или гидрокарбонатно-натриевая вода. Увеличение кислотности пластовых вод приводит к получению более стойких эмульсий. Умень­шение кислотности пластовых вод достигается введением в эмульсию щелочи, способствующей снижению прочности бро­нирующих слоев.

Основные из указанных факторов, влияющих на устойчи­вость эмульсий, следующие: соотношение плотностей фаз, вязкость нефти, а также прочность защитных слоев на кап­лях воды. Свежие эмульсии легче поддаются разрушению, поэтому обезвоживание и обессоливание целесообразнее про­водить на промысле.

При проектировании сооружений обезвоживания нефти для конкретных производственных условий необходимо иметь экспериментальные данные об обводненности, качественном и количественном составе примесей, ожидаемом состоянии эмульсии. Одновременно с обезвоживанием нефти происхо­дит и ее обессоливание, поскольку вода отделяется от нефти вместе с растворенными в ней минеральными примесями. При необходимости, для более полного обессоливания, мож­но дополнительно в нефть подавать пресную воду, которая растворяет кристаллы минеральных солей, и при последую­щем отделении минерализованной воды происходит углуб­ленное обессоливание нефти.

Основная разновидность приемов обезвоживания нефти — гравитационное отстаивание. Применяют два вида режимов отстаивания — периодический и непрерывный, которые осу­ществляются соответственно в отстойниках периодического и непрерывного действия.

В качестве отстойников периодического действия приме­няют цилиндрические отстойники — резервуары (резервуа­ры отстаивания). Сырая нефть, подвергаемая обезвожива­нию, вводится в резервуар при помощи распределительного трубопровода (маточника). После заполнения резервуара вода осаждается и скапливается в нижней части, а нефть собира­ется в верхней части резервуара. Отстаивание осуществляет­ся при спокойном (неподвижном) состоянии обрабатываемой нефти. По окончании процесса обезвоживания нефть и вода отбираются из отстойников. Положительные результаты ра­боты отстойного резервуара достигаются только в случае содержания воды в нефти в свободном состоянии или в состоянии крупнодисперсной нестабилизированной эмульсии.

Рис. 4.4. Отстойники непрерывного действия:

а — горизонтальный; б — вертикальный; в — наклонный;

г — конический; 1 — поверхность раздела; 2 — перегородка

Различают горизонтальные и вертикальные отстойники не­прерывного действия (рис. 4.4). Горизонтальные отстойники подразделяются на продольные и радиальные. Продольные горизонтальные отстойники в зависимости от формы попе­речного сечения могут быть прямоугольные и круглые. В гравитационных отстойниках непрерывного действия отстаи­вание осуществляется при непрерывном потоке обрабатывае­мой жидкости. Эмульсия расслаивается под действием силы тяжести на поверхности раздела. При достаточной длине от­стойника в выходной его части происходит полное разделе­ние фаз эмульсии.

Одним из основных способов обезвоживания нефти явля­ется термическая, или тепловая, обработка, которая заключа­ется в том, что нефть перед отстаиванием нагревают. При повышении температуры вязкость вещества бронирующего слоя на поверхности частицы воды уменьшается и прочность оболочки снижается, что облегчает слияние глобул воды. Кроме того, снижение вязкости нефти при нагреве увеличивает ско­рость оседания частиц при отстаивании.

Термическая обработка нефти редко осуществляется толь­ко для отстаивания, чаще такая обработка применяется как составной элемент более сложных комплексных методов обезвоживания нефти, например, в составе термохимичес­кого обезвоживания (в сочетании с химическими реагента­ми и отстаиванием), в комплексе с электрической обработ­кой и в некоторых других комбинированных методах обез­воживания.

Нефть нагревают в специальных нагревательных установ­ках, которые располагают в технологической линии обезво­живания нефти после отделения (сепарации) из нефти газов, но ранее ввода в отстойник. Температура нагревания уста­навливается с учетом особенностей водонефтяных эмульсий и элементов принятой системы обезвоживания.

В нефтяной промышленности весьма широко применяют химические методы обезвоживания нефти, основанные на разрушении эмульсий при помощи химических реагентов. Эффективность химического обезвоживания в значительной степени зависит от типа применяемого реагента. Выбор реагентов-деэмульгаторов, в свою очередь, зависит от вида водонефтяной эмульсии и свойств нефти, подвергаемой деэмуль-сации. Химическое обезвоживание, как и прочие комбиниро­ванные методы обезвоживания нефти, включает гравитаци­онное отстаивание после обработки реагентов водонефтяной эмульсии. В эмульсию, подвергаемую разрушению, вводится реагент-деэмульгатор и перемешивается с ней, после чего создаются условия для выделения воды из нефти путем от­стаивания. Можно применять как периодическое, так и не­прерывное разрушение эмульсий, но предпочтение отдается непрерывным процессам.

Известны три метода химического обезвоживания нефти:

1) внутрискважинная деэмульсация — обезвоживание, ос­нованное на деэмульсации, которая осуществляется в нефтя­ной скважине, т. е. когда реагент вводится непосредственно в скважине;

2) путевая деэмульсация — обезвоживание, основанное на деэмульсации, которая осуществляется в нефтесборном тру­бопроводе, т. е. когда реагент вводится на начальном участке нефтесборного коллектора;

3) деэмульсация и обезвоживание нефти непосредственно в отстойных резервуарах, когда реагент вводится в резервуар после его заполнения эмульсией, подвергаемой обработке.

Первые два метода имеют некоторые преимущества и яв­ляются более эффективными.

Для деэмульсации нестойких эмульсий применяют метод фильтрации, основанный на явлении селективной смачивае­мости веществ различными жидкостями. Материалом фильт­рующего слоя могут быть обезвоженный песок, гравий, би­тое стекло, стекловата, древесная стружка из осины, тополя и других несмолистых пород древесины, а также металличес­кая стружка. Особенно часто применяют стекловату, которая хорошо смачивается водой и не смачивается нефтью. Фильт­ры из стекловаты долговечны.

Фильтрующие вещества должны обладать следующими основными свойствами: хорошо смачиваться водой, благодаря чему глобулы воды прилипают к поверхности фильтрующего вещества, коагулируют и стекают вниз; иметь высокую проч­ность, которая обеспечивает длительную работу фильтра; иметь противоположный, чем у глобул, электрический заряд. Тогда при прохождении глобулами воды фильтра электрический заряд с поверхности капли снимается, чем снижаются оттал­кивающие силы между ними. Капли укрупняются и стекают вниз, а нефть свободно проходит через фильтр.

Фильтрующие установки обычно выполняют в виде ко­лонн, размеры которых определяются в зависимости от вяз­костных свойств эмульсии и объема обезвоживаемой нефти. Обезвоживание нефти фильтрацией применяют очень редко из-за малой производительности, громоздкости оборудования и необходимости частой смены фильтрующего материала. Филь­трация более эффективна в сочетании с процессами предва­рительного снижения прочности бронирующих оболочек.

Теплохимические процессы снижают прочность брониру­ющих оболочек или полностью их разрушают, что ускоряет и удешевляет разделение нефтяной эмульсии. В настоящее вре­мя более 80 % всей обводненной нефти проходит обработку на теплохимических установках. Такое широкое применение этот метод получил благодаря возможности обрабатывать нефти с различным содержанием воды без замены оборудования и аппаратуры, простоте установки, возможности менять деэмульгатор в зависимости от свойств поступающей эмульсии. Однако теплохимический метод имеет ряд недостатков (на­пример, большие затраты на деэмульгаторы и повышенный расход тепла). На практике процессы обессоливания и обез­воживания нефти ведутся при температуре 50— 100 °С.

По воздействию на нефтяные эмульсии все существую­щие деэмульгаторы делятся на электролиты, неэлектролиты и коллоиды.

Деэмульгаторами-электролитами могут быть некоторые органические и минеральные кислоты: уксусная, серная и соляная; щелочи и соли: поваренная соль, хлорное железо, соединения алюминия и др. Электролиты могут образовывать нерастворимые осадки с солями эмульсии, снижать стабиль­ность бронирующей оболочки или способствовать разруше­нию эмульгаторов бронирующей пленки. Электролиты как деэмульгаторы применяются крайне ограниченно в связи с их высокой стоимостью или особой коррозионной активнос­тью к металлу оборудования.

К неэлектролитам относятся органические вещества, спо­собные растворять бронирующую оболочку и снижать вяз­кость нефти. Такими деэмульгаторами могут быть бензин, ацетон, спирт, бензол, четыреххлористый углерод, фенол и др. Неэлектролиты в промышленности не применяются из-за их высокой стоимости.

Деэмульгаторы-коллоиды — это поверхностно-активные ве­щества (ПАВ), которые в эмульсии разрушают или ослабляют защитную оболочку капли. Существующие ПАВ делятся на анионактивные, катионактивные, неионогенные. Анионактивные ПАВ в водных растворах диссоциируют на отрицательно заряженные ионы углеводородной части и положительно за­ряженные ионы металлов или водорода. Представителями этой группы являются карбоновые кислоты и их соли, сульфокис-лоты, алкилсульонаты и др. Катионактивные ПАВ в водных растворах распадаются на положительно заряженный ради­кал и отрицательно заряженный остаток кислоты. Как деэ­мульгаторы эти ПАВ в промышленности не применяются. Неионогенные ПАВ в водных растворах не распадаются на ионы. К этой группе относятся оксиэтилированные алкилфе-нолы (деэмульгаторы ОП-4, ОП-7, ОП-10, ДБ-4, УФЭ-8, КАУ-ФЭ-14 и др.), оксиэтилированные органические вещества с подвижным атомом водорода (дипроксамин 15,7; проксамин 385, проксанол-305 и др.).

Деэмульгатор должен хорошо растворяться в одной из фаз эмульсии (в воде или нефти), т. е. быть гидрофобными или гидрофильными, обладать поверхностной активностью, достаточной для разрушения бронирующих оболочек глобул, быть инертными по отношению к металлам, не ухудшать качества нефти, быть дешевыми и по возможности универ­сальными по отношению к эмульсиям различных нефтей и вод. Чем раньше деэмульгатор вводится в смесь воды и не­фти, тем легче происходит разделение эмульсии. Однако для разделения эмульсии еще недостаточно одного введения деэ-мульгатора. Необходимо обеспечить полный контакт его с обрабатываемой эмульсией, что достигается интенсивной турбулизацией и подогревом эмульсий.

Электрическое обезвоживание и обессоливание нефти особенно широко распространено в заводской практике, реже применяется на нефтепромыслах. Возможность при­менения электрического способа в сочетании с другими способами (термическим, химическим) можно отнести к одному из основных его достоинств. Правильно выбранные режимы электрической обработки практически позволяют успешно провести обезвоживание и обессоливание любых эмульсий [36, 39].

Рассмотрим механизм обезвоживания нефтяных эмульсий в электрическом поле.

В результате индукции капли воды вытягиваются вдоль цепи электрического поля с образованием в вершинах элек­трических зарядов. Под действием основного и индивидуаль­ного полей капли приходят в упорядоченное движение и сталкиваются, что приводит к их коалесценции. При прохож­дении эмульсии через электрическое поле, создаваемое пере­менным по величине и направлению током, так же, как и при постоянном токе, капли, имеющие заряд, стремятся к электродам. Однако вследствие изменения напряжения поля капли воды начинают двигаться синхронно основному полю и поэтому все время находятся в колебании. При этом форма капель непрерывно меняется. В связи с этим происхо­дит разрушение адсорбированных оболочек капель, что об­легчает их слияние при столкновениях. Установлено, что деэмульсация нефти в электрическом поле переменной частоты и силы тока в несколько раз эффективнее, чем при исполь­зовании постоянного тока.

На эффективность электродеэмульсации значительно вли­яют вязкость и плотность эмульсии, дисперсность, содержа­ние воды, электропроводность, а также прочность адсорбиро­ванных оболочек. Однако основным фактором является на­пряженность электрического поля. В настоящее время элект­родеэмульсаторы в основном работают на токах промышлен­ной частоты в 50 Гц, реже — на постоянном токе и совсем редко — на токах высокой частоты. Напряжение на электро­дах деэмульсаторов колеблется отдоВ.

Добываемые нефти могут содержать в различных количе­ствах растворенные газы (азот, кислород, сероводород, угле­кислоту, аргон и др.), а также легкие углеводороды. При движении нефти от забоя скважины до нефтеперерабатыва­ющего завода из-за недостаточной герметизации систем сбо­ра, транспорта и хранения часто полностью теряются раство­ренные в ней газы и происходят значительные потери легких нефтяных фракций. При этом при испарении легких фрак­ций, таких как метан, этан и пропан, частично уносятся и более тяжелые углеводороды бутан, пентан и др.

Предотвратить потери нефти можно путем полной герме­тизации всех путей движения нефти. Однако некоторое не­совершенство существующих систем сбора и транспорта не­фти, резервуаров, технологии налива и слива не позволяют доставить нефть на переработку без потерь легких фракций. Следовательно, необходимо отобрать газы и легкие фракции нефти в условиях промысла и направить их для дальнейшей переработки.

Основную борьбу с потерями нефти требуется начинать с момента выхода ее из скважины. Ликвидировать потери лег­ких фракций нефти можно в основном применением рацио­нальных систем сбора нефти и попутного нефтяного газа, а также сооружением установок по стабилизации нефти для ее последующего хранения и транспорта. Под стабилизацией нефти следует понимать извлечение легких углеводородов, которые при нормальных условиях являются газообразными, для дальнейшего их использования в нефтехимической про­мышленности. Степень стабилизации нефти, т. е. степень извлечения легких углеводородов, для каждого конкретного месторождения зависит от количества добываемой нефти, содержания в ней легких углеводородов, возможности реализации продуктов стабилизации, технологии сбора нефти и газа на промысле, увеличения затрат на перекачку нефти за счет повышения вязкости после стабилизации из-за глубоко­го извлечения легких углеводородов, влияния стабилизации на бензиновый фактор нефти.

Существуют два различных метода стабилизации нефти — сепарация и ректификация.

Сепарация — отделение от нефти легких углеводородов и сопутствующих газов однократным или многократным испа­рением путем снижения давления (часто с предварительным подогревом нефти).

Ректификация — отбор из нефти легких фракций при однократном или многократном нагреве и конденсации с чет­ким разделением углеводородов до заданной глубины стаби­лизации.

Процесс сепарации может начинаться сразу же при дви­жении нефти, когда из нее отбирается газ, выделившийся в результате снижения давления или повышения температу­ры. При резком снижении давления в сепараторе значи­тельно увеличивается количество тяжелых углеводородов, уносимых свободным газом. При быстром прохождении не­фти через сепаратор возрастает количество легких углево­дородов в нефти.

Многоступенчатая система сепарации позволяет получить на первых ступенях метан, который направляется на соб­ственные нужды или потребителям, а на последующих ступе­нях — жирный газ, содержащий более тяжелые углеводоро­ды. Жирный газ отправляется на газобензиновые заводы для последующей переработки.

При наличии газобензинового завода (с учетом затрат на содержание и эксплуатацию установок многоступенчатой се­парации) экономически целесообразно применять двухступен­чатую систему сепарации.

Для стабилизации нефти на промыслах используют в ос­новном метод сепарации. Сосуд, в котором происходит отде­ление газа от нефти, называют сепаратором. В сепарационных установках происходит и частичное отделение воды от нефти. Применяемые сепараторы можно условно разделить на следующие основные типы:

1) по принципу действия — гравитационные, центробеж­ные (гидроциклонные), ультразвуковые, жалюзийные и др.;

2) по геометрической форме и положению в простран­стве — сферические, цилиндрические, вертикальные, гори­зонтальные и наклонные;

3) по рабочему давлению — высокого (более 2,5 МПа), среднего (0,6 — 2,5 МПа) и низкого (0 — 0,6 МПа) давления, вакуумные;

4) по назначению — замерные и рабочие;

5) по месту положения в системе сбора — первой, второй и концевой ступеней сепарации.

В сепараторах любого типа по технологическим признакам различают четыре секции:

I — основную сепарационную;

Рис. 4.5. Вертикальный сепаратор:

/ — корпус; 2 — поплавок; 3 — дренажная трубка; 4 — наклонные плоско­сти; 5 — патрубок для ввода газожидкостной смеси; 6 — регулятор давле­ния; 7 — перегородка для выравнивания скорости газа; 8 — жалюзийная насадка; 9 — регулятор уровня; 10 — патрубок для сброса нефти; 11 — раздаточный коллектор; 12 — люк; 13 — заглушка; секции: / — сепарацион-ная; IIосадительная; IIIотбора нефти; IVкаплеуловительная

II — осадительную, предназначенную для выделения пузырьков газа, увлеченных нефтью из сепарационной секции;

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19