III — секцию отбора нефти, служащую для сбора и отвода нефти из сепара­тора;

IV — каплеуловительную, находящуюся в верхней части аппарата и служащую для улавливания капельной нефти, уно­симой потоком газа.

Эффективность работы аппаратов характеризуется коли­чеством жидкости, уносимой газом, и количеством газа, ос­тавшегося в нефти после сепарации. Чем ниже эти показате­ли, тем более эффективна работа аппарата.

Рассмотрим конструктивные особенности промысловых се­параторов.

В вертикальном цилиндри-ческом гравитационном сепара­торе (рис. 4.5) газонефтяная смесь через патрубок поступа­ет в раздаточный коллектор и через щелевой выход попада­ет в основную сепарационную секцию /. В осадительной секции II из нефти при ее течении по наклонным плоско­стям происходит дальнейшее выделение окклюдиро-ванных пузырьков газа. Разгазированная нефть поступает в секцию ее сбора III, из которой через патрубок отводится из сепа­ратора. Газ, выделившийся из нефти на наклонных плоско­стях, попадает в каплеуловительную секцию IV, проходит через жалюзийную насадку и по трубопроводу выходит из сепаратора. Капли нефти, захваченные потоком газа и неус­певающие осесть под действием силы тяжести, в жалюзийных решетках прилипают к стенкам и стекают по дренаж­ной трубке в секцию сбора нефти.

Гидроциклонный двухъемкостный сепаратор (рис. 4.6) при­меняют на промыслах для работы на / ступени сепарации. Газонасыщенная нефть через тангенциальный вход поступает в гидроциклонную головку, где за счет центробежных сил нефть и газ разделяются на самостоятельные потоки. В вер­хнюю емкость нефть и газ поступают раздельно. Нефть по направляющей полке стекает на уголковый разбрызгиватель, в котором поток нефти разбивается на отдельные струи и происходит дальнейшее выделение газа. По сливной полке разгазированная нефть собирается в нижней емкости сепара­тора. При достижении определенного объема нефти в ниж­ней емкости поплавковый регулятор уровня через исполни­тельный механизм направляет дегазированную нефть в от­водной трубопровод. Газ, отделившийся от нефти в дегазато­ре, проходит в верхней емкости перфорированные перего­родки, где происходит выравнивание скорости газа и частич­ное выпадение жидкости. Окончательная очистка газа проис­ходит в жалюзийной насадке 7. Отделенная от газа жидкость по дренажной трубке 10 стекает в нижнюю емкость 9 [36].

Рис. 4.6. Гидроциклонный двухъемкостный сепаратор:

1 — тангенциальный ввод газонефтяной смеси; 2 — головка гидроциклона; 3 — отбойный козырек для газа; 4 — направляющий патрубок; 5 — верхняя емкость сепаратора; 6 — перфорированные сетки для улавливания капель­ной жидкости; 7 — жалюзийная насадка; 8 — отвод газа; 9 — нижняя емкость гидроциклона; 10 — дренажная трубка; 11 — уголковые разбрызги­ватели; 12 — направляющая полка; 13 — перегородка; 14 — исполнительные механизмы

Падение давления в сборных коллекторах в результате дви­жения по ним газонефтяной смеси может приводить к частич­ному выделению газа из нефти. В этом случае в сепарационную установку можно подавать нефть и газ разделенными потоками. Такой принцип использован на блочных сепарационных установках с предварительным отбором газа (рис. 4.7). Газожидкостная смесь от скважин поступает в устройство пред­варительного отбора газа, которое расположено на наклонном участке подводящего трубопровода. Устройство предваритель­ного отбора газа представляет собой отрезок подводящего трубопровода значительно большего диаметра, чем основная подводящая линия, установленный под углом 3 — 4° к горизон­ту, с вертикально приваренной газоотводной вилкой, которая соединена трубопроводом с каплеуловительной секцией. Пред­варительно отобранный газ проходит через каплеуловитель, где в жалюзийных насадках отделяется от капельной влаги. Нефть вместе с газом, не успевшим выделиться из нефти и не попавшим в газоотводную вилку, поступает в технологическую емкость, в которой на диффузоре и наклонных полках ско­рость потока снижается и происходит интенсивное разгазирование. Выделившийся в технологической емкости газ также проходит через каплеуловитель.

Разработано и применяется большое число аппаратов для разгазирования и частичного обезвоживания нефти перед подачей ее на установку подготовки товарной нефти.

Добываемые из газовых месторождений природные газы содержат наряду с углеводородами азот, углекислоту, серо­водород, гелий, аргон, пары воды, капельную пресную и минерализованную воду, а также механические примеси — частицы породы и тампонажного цемента. Нередко с газом длительное время выносятся из пласта ингредиенты бурово­го раствора, проникшего в коллектор в процессе бурения скважины.

Требования, предъявляемые к качеству природного газа, зависят от его назначения [32].

Рис. 4.7. Сепаратор с предварительным отбором газа и жалюзийными насадками:

1 — подводящий трубопровод; 2 — вилка для предварительного отбора газа; 3 — каплеуловитель; 4 — жалюзийные насадки; 5 — газопровод с регулято­ром давления; 6 — предохранительный клапан; 7 — корпус сепаратора; 8 — поплавок; 9 — пеногаситель; 10 — наклонные полки; 11 — диффузор

Природный газ, поступающий в ЕСГ, должен содержать не более 2 г сероводорода на 100 м3 (при стандартных усло­виях) . Точка росы должна быть ниже температуры в газопро­воде. Наиболее детально разработаны нормы содержания в природном газе паров воды. Согласно отраслевым стандар­там, природный газ надо осушать в зависимости от времени года, климатического пояса, в котором проложен газопровод, и максимального давления в нем. Ниже приведены основные требования к степени осушки природного газа.

Степень осушки природного газа

Район............................................. Севера

Средней полосы

Точка росы, °С.........................

-10 -5

Время действия показателя...... Круглогодично

01.10-31

Несоблюдение требований, предъявляемых к качеству при­родного газа, приводит к порче оборудования, к большому перерасходу средств, а иногда и к авариям, убыток от кото­рых не всегда поддается точному учету.

Необходимо отметить, что некоторые компоненты природ­ного газа в зависимости от конкретных условий могут пере­ходить из категории вредных примесей в разряд ценных ингредиентов.

Выбор системы сбора зависит от запасов и состава газа, от формы залежи, размещения и продуктивности скважин, пластового давления и многих других факторов. При выборе системы сбора и подготовки газа следует учитывать также, что со временем давление в залежи будет снижаться, состав газа и конденсата изменяться, а отбор газа из залежи посте­пенно нарастать и в разработку будут вводиться новые пла­сты. Поэтому на газовых промыслах не встречается одинако­вых систем сбора, однако разработаны системы сбора и под­готовки газа, типичные для определенных условий (рис. 4.8).

Существуют следующие системы сбора газа: линейная, лу­чевая, кольцевая, групповая [7].

Линейная система применяется на вытянутых газовых ме­сторождениях, не имеющих большого народнохозяйственно­го значения. Ее достоинство — простота и небольшие капи­тальные затраты. К недостаткам можно отнести неудобство обслуживания и применения устройств автоматического регулирования, трудности индивидуальной регулировки работы скважин, малую надежность системы.

Лучевая система предполагает подключение скважин к газо­сборному пункту по индивидуальным шлейфам. Основное ее достоинство по сравнению с другими системами — надежность, удобство регулировки режима скважин, возможность автомати­зации. Лучевые системы типичны для небольших газовых мес­торождений, приуроченных к брахиантиклинальным складкам.

Рис. 4.8. Системы сбора газа:

а — линейная; б — лучевая; в — кольцевая; г — групповая

Кольцевая система характеризу-ется более высокой, чем линейная, надежностью сбора газа и пониженной металлоем­костью [36].

При линейной и кольцевой системах сбора газа обычно предусматривают установку около скважины сепараторов, метаноль-ных емкостей, расходомеров. Обслуживание их вызы­вает большие затруднения, особенно в условиях заболочен­ной местности и сурового климата.

Многих из этих недостатков лишена групповая система. В этой системе газ и конденсат из скважин по индивидуальным шлейфам поступают на пункты промыслового сбора газа (ППСГ) или установки комплексной подготовки газа (УКПГ), где происходит очистка и частичная осушка газа, регулиров­ка расхода, учет добываемой продукции.

К основным достоинствам этой системы относятся незави­симость контроля и регулировки работы отдельных скважин, возможность полной автоматизации процессов, высокая на­дежность работы установок, относительно простое решение проблемы борьбы с гидратами. При групповой системе зна­чительно упрощаются промышленная канализация, тепло - и энергоснабжение, ремонт оборудования, ревизия его состоя­ния, облегчаются организация строительных и монтажных работ и их индустриализация.

Эти преимущества способствовали тому, что, несмотря на несколько повышенные по сравнению с более простыми си­стемами капитальные вложения, групповая система сбора и подготовки газа получила наибольшее развитие на современ­ных газовых и газоконденсатных промыслах, таких как Мед­вежье, Вуктыл, Оренбург и др.

К одному газосборному пункту (ГП) или УКПГ подключают­ся от 10 до 30 скважин. Число ГП зависит от размеров залежи, обычно оно составляет 5-10, но может достигать 20-25.

По месту подготовки газа к транспорту различают центра­лизованную и децентрализованную системы. При централи­зованной системе на отдельных ГП, ППСГ предусматривает­ся частичная подготовка газа. До окончательной кондиции газ доводится на центральном пункте сбора и подготовки, обычно расположенном в начале магистрального газопрово­да, называемом головным сооружением. При децентрализо­ванной системе подготовки предполагается окончательная подготовка газа на каждом газосборном пункте УКПГ. Децен­трализованная система типична для газоконденсатных про­мыслов с залежами, богатыми тяжелыми углеводородами.

Рис. 4.9. Гравитационный односекционный сепаратор при рабочем давле­нии:

1,2 — выходной и входной патрубки; 3 — люк; 4 — патрубок для продувки сепаратора

Очистка газа по пути его следования от месторождения до потребителя производится в несколько ступеней. Первая сту­пень — установка внутрискважинного фильтра для ограниче­ния выноса породы призабойной зоны [39, 41]. Вторую сту­пень очистки газ проходит на промысле в наземных сепара­торах, в которых сепарируется жидкость (вода и конденсат) и газ очищается от частиц породы и пыли.

Промысловые аппараты работают по принципу выпаде­ния взвеси под действием силы тяжести при уменьшении скорости потока газа или по принципу использования дей­ствия центробежных сил при специальной закрутке потока. Поэтому промысловые аппараты очистки делятся на грави­тационные и циклонные. Гравитационные аппараты, в свою очередь, подразделяются на вертикальные и горизонталь­ные. Вертикальные гравитационные сепараторы рекоменду­ют для очистки газов, содержащих твердые частицы и тяже­лые смолистые фракции, так как они имеют лучшие условия очистки и дренажа.

На рис. 4.9 изображен гравитационный односекционный сепаратор. Он имеет тангенциальный подвод газа (скорость в нем достигает 15-20 м/с), что способствует выпадению в сепараторе твердой взвеси и капельной влаги. В основном он работает по принципу выпадения взвеси при малых скорос­тях восходящего потока газа. Опыт эксплуатации показал, что скорость газа на выходе из сепаратора не должна превы­шать 0,1 м/с при давлении б МПа.

Вертикальные сепараторы изготовляют диаметром 400—1650 мм, горизонтальные — диаметрами 400— 1500 мм при максимальном давлении 16 МПа. При оптимальной скорости газа эффективность сепарации достигает 70 — 80 %. В связи с большой металлоемкостью и недостаточной эффективностью гравитационные сепараторы применяют редко.

Рис. 4.10. Схема движения газов в цик­лоне:

/ — выход газа; IIвход газа; III — удаление продуктов очистки

На рис. 4.10 схемати­чески изображена работа циклонного сепаратора. Корпус циклона и патру­бок для выхода газа обра­зуют внутреннее кольце­вое пространство. В ниж­ней части имеется отвер­стие для отвода осадка из циклона. При тангенциаль­ном вводе газ в сепарато­ре приобретает в кольце­вом пространстве и кону­се вращательное движение, вследствие чего из газа выпадают механические взвеси (твердые и жидкие) и опускаются в сборный бункер. Газ с уменьшен­ной скоростью выходит через верхний патрубок.

Третья ступень очист­ки газа производится на линейной части газопро­вода и компрессорных станциях. На линейной части устанавливают конденсатосборники, так как в результате несовершен­ной сепарации на промыс­ле газ может иметь жид­кую фазу.

Наибольшее распрост­ранение получил конденсатосборник типа «расши­рительная камера» (рис. 4.11). Принцип ее работы основан на выпадении из потока газа капелек жид­кости под действием силы тяжести из-за местного снижения скорости пото­ка при увеличении диа­метра трубопровода.

При эксплуатации газопроводов с системой «расширитель­ных камер» возникают затруднения, связанные с пропуском устройств для очистки внутренней полости трубопровода. Для этого необходимо предусматривать специальные направляю­щие для беспрепятственного прохождения через них очист­ного устройства. Для очистки газа от механических примесей на отечественных газопроводах применяют установки с мас­ляными пылеуловителями (рис. 4.12).

Рис. 4.11. Конденсатосборник типа «расширительная камера»:

1 — газопровод; 2 — расширительная камера; 3 — ребра жесткости; 4 — конденсатоотводная трубка

Рис. 4.12. Схема установки пылеуловителей

Природный газ Г, прой­дя пылеуловители 1, направляется в компрессорный цех. Пы­леуловители заполнены маслом. По мере загрязнения масло МЗ (загрязненное масло) передавливается из пылеуловителей 1 в отстойники 7. Свежее масло (МС) поступает в пылеуло­вители самотеком из масляного аккумулятора 2. Предвари­тельно в аккумуляторе и пылеуловителях выравнивается дав­ление. В масляный аккумулятор масло подается насосом 3 из мерного бака 5 или из бака свежего масла 4. При этом аккумулятор отключают от пылеуловителей и находящийся в них газ выпускают в атмосферу. В мерный бак масло посту­пает самотеком из отстойников 7. Отбросное масло (МО) вместе со шламом, накапливающимся в нижней части от­стойников, спускают в сборную емкость 6.

Вертикальный масляный пылеуловитель (ПУ) представляет собой вертикальный стальной цилиндр со сферическим дни­щем, рассчитанным на рабочее давление в газопроводе (рис. 4.13).

Диаметр пылеуловителя составляет 1080 — 2400 мм. Внутри ПУ находятся устройства, обеспечивающие контактирование масла с газом и отделение частиц масла от газа при выходе его из аппарата. Газ поступает в пылеуловитель через вход­ной патрубок 7. Благодаря отбойному козырьку 8 газ меняет свое направление и движется к поверхности масла, находя­щегося в нижней части аппарата. Крупные посторонние частицы при этом сразу же выпадают и оседают на дно. Уровень масла ус­танавливается на рассто­янии 25 — 30 мм от кон­цов вертикальных тру­бок 3. При этом газ ус­тремляется вверх, захва­тывая с собой частицы масла. В трубках 3, а далее в средней свобод­ной части пылеуловите­ля газ интенсивно пере­мешивается с маслом, которое поглощает со­держащиеся в газе час­тицы, а также поступа­ющий вместе с газом конденсат тяжелых уг­леводородов.

Рис - 4.13. Вертикальный масляный пыле­уловитель

Рис. 4.14. Циклонный пылеуловитель пропускной способностью 20 млн м3/ сут и рабочим давлением 7,5 МПа:

] — выходной патрубок для газа; 2 — входной патрубок; 3 — циклоны; 4 — люк; 5 — штуцеры контролирующих приборов; б — дренажный штуцер

При этом уровень масла повыша­ется. По мере выхода газа из вертикальных трубок скорость его рез­ко уменьшается. Более крупные частицы жид­кости при этом выпада­ют и по дренажной трубке 4 стекают вниз. Из свободной средней части пылеуловителя газ и масляный туман по­ступают в его верхнюю часть, а оттуда в жалюзийное сепарационное устройство 1, в котором отбирается мелкозерни­стая взвесь. Очищенный газ выходит через пат­рубок 2. Загрязненное масло удаляется из под­дона через дренажную трубку 5. Полная очистка пылеуловителя производится 3 — 4 раза в год через люк 6. Количество заливаемого масла в пылеуловитель диаметром 2400 мм не превышает 1,5 — 2,0 м3. Что­бы обеспечить нормальную ра­боту пылеуловителей, необходи­мо поддерживать постоянный уровень масла. Пропускная спо­собность вертикальных масля­ных пылеуловителей при задан­ном давлении ограничивается скоростью потока газа в кон­тактных трубках, которая не должна превышать 1 — 3 м/с.

Преимущество вертикально­го масляного пылеуловителя по сравнению с другими конструк­циями пылеуловителей заклю­чается в высокой степени очи­стки (общий коэффициент очи­стки достигает 97 — 98 %); к недостаткам относятся большая металлоемкость, наличие жид­кости и ее унос (допускается не более 25 г на 1000 м3 газа), большое гидравлическое сопро­тивление (0,0350-0,05 МПа), чувствительность к изменению уровня жидкости и др.

На компрессорных станци­ях для очистки газа применя­ются также циклонные пыле­уловители. Циклонный пылеуло­витель (рис. 4.14) представляет собой сосуд цилиндрической формы с встроенными в него циклонами. Газ поступает через боковой верхний патрубок в распределитель, к которому приварены своими входными патрубками звездообразно расположенные циклоны, неподвижно закрепленные на нижней решетке. Отсепарированная жидкость и твердые частицы по дренажному конусу циклона попадают в отстойник. Для автоматического удале­ния собранного шлама предусмотрен дренажный штуцер. Качество очистки повышается с уменьшением диаметра цик­лона. Поэтому созданы батарейные циклоны, объединяю­щие в своем корпусе группу циклонов малого диаметра. Закручивание потока происходит в циклонах типа «розетка» и «улитка» (рис. 4.15).

При работе по системе газ — твердая взвесь пропускную способность батарейных циклонов обычно рассчитывают, ис­ходя из допустимых скоростей газа, обеспечивающих доста­точно полное удаление твердой взвеси из газового потока. При большом расходе газа наблюдается чрезмерный эрози­онный вынос и повышенный перепад давления газа. Эффек­тивность очистки газа батарейными циклонами колеблется в пределах 85 — 98 % и уменьшается с увеличением его пропус­кной способности.

При работе по системе газ — твердая взвесь пропускную способность батарейных циклонов обычно рассчитывают, ис­ходя из допустимых скоростей газа, обеспечивающих доста­точно полное удаление твердой взвеси из газового потока. При большом расходе газа наблюдается чрезмерный эрози­онный вынос и повышенный перепад давления газа. Эффек­тивность очистки газа батарейными циклонами колеблется в пределах 85 — 98 % и уменьшается с увеличением его пропус­кной способности.

В настоящее время широко применяются циклонные пы­леуловители диаметром 1600 мм на рабочее давление до 7,36 МПа.

Природные газы в определенных термодинамических ус­ловиях вступают в соединение с водой, образуя гидраты, которые, скапливаясь в промысловых и магистральных газо­проводах, существенно увеличивают их гидравлическое со­противление и, следовательно, снижают пропускную способ­ность. Особое значение проблема борьбы с образованием гидратов приобретает при разработке месторождений Запад­ной Сибири и Крайнего Севера. Низкие пластовые темпера­туры и суровые климатические условия этих районов созда­ют благоприятные условия для образования гидратов в сква­жинах и газопроводах [14].

Гидраты представляют собой соединения молекулярного типа, возникающие за счет действия ван-дер-ваальсовых сил притя­жения. Молекулы воды при образовании гидратов как бы раздвигаются молекулами газа. Образующиеся при этом поло­сти между молекулами воды полностью или частично заполня­ются молекулами газа. Гидраты природных газов представля­ют собой неустойчивые соединения, которые при повышении температуры или понижении давления разлагаются на газ и воду. По внешнему виду — это белая кристаллическая масса, похожая на снег или лед. Если природные газы содержат кислые примеси, то процесс гидратообразования ускоряется.

Процесс гидратообразования обычно происходит на гра­нице газ — вода при условии полного насыщения природно­го газа водой. Для прогнозирования места образования и интенсивности накопления гидратов в системах газоснабже­ния необходимо знать изменение влажности газа в различ­ных термодинамических условиях.

На практике часто пользуются абсолютной влажностью, выраженной массой паров воды в единице объема газа, при­веденной к нормальным условиям (273 К и 0,1013 МПа). Относительная влажность — это выраженное в процентах или в долях единицы отношение количества водяных паров, содержащихся в газовой смеси, к количеству водяных паров в том же объеме и при тех же температуре и давлении при полном насыщении. Температура, при которой газ становит­ся насыщенным при данных давлении и влажности, называ­ется точкой росы.

Для того чтобы в газопроводах не образовывались гидра­ты, влажность подаваемого в него газа не должна превышать минимального значения. Это условие является основным при проектировании установок осушки газа перед подачей его в газопровод.

Существуют следующие методы борьбы с образованием гидратов в газопроводах: подогрев газа; снижение давления газа; введение ингибиторов в поток газа; осушка газа.

Предупреждение образования гидратов методом подогрева газа заключается в том, что при сохранении давления в газо­проводе температура газа поддерживается выше равновесной температуры гидратов. В условиях транспорта газа по магис­тральному газопроводу этот метод неприменим, так как свя­зан с большими затратами энергии. Как показывают расчеты, при больших объемах транспортируемого газа целесообраз­нее его охлаждать, поскольку это позволит заметно увели­чить пропускную способность газопроводов, особенно круп­ных газопроводов с большим числом компрессорных стан­ций. Метод подогрева газа применяется на газораспредели­тельных станциях, где при больших перепадах давления вслед­ствие дроссельного эффекта температура газа может значи­тельно снижаться, в результате чего обмерзает редуцирую­щая аппаратура (клапаны, краны, диафрагмы).

Предупреждение образования гидратов снижением давле­ния заключается в том, что при сохранении температуры в газопроводе уменьшают давление до значения ниже равно­весного давления образования гидратов. Этот метод применя­ется для ликвидации образовавшихся гидратных пробок. Пробки ликвидируют путем выпуска газа в атмосферу через проду­вочные свечи. После снижения давления необходимо некото­рое время (от нескольких минут до нескольких часов) для разложения гидратов. Очевидно, что данный метод пригоден только для ликвидации гидратных пробок при положитель­ных температурах. В противном случае гидратная пробка пе­рейдет в ледяную. Поскольку минимальная температура газа в газопроводе близка к нулю, а равновесное давление при этом находится в пределах 1 — 1,5 МПа, применение этого метода оказывается неэффективным для предупреждения об­разования гидратов в магистральных газопроводах. Это свя­зано также с тем, что оптимальное давление транспортируе­мого газа составляет 5 — 7 МПа. Метод снижения давления применяется в аварийных ситуациях для разложения гидра­тов в газопроводе в сочетании с ингибиторами, так как в противном случае гидраты образуются вновь.

Введение в поток газа ингибиторов приводит к тому, что водяные пары газа частично поглощаются ими и переводятся вместе со свободной водой в водный раствор, который со­всем не образует гидратов или образует их при более низких температурах. В качестве ингибиторов применяются метанол (метиловый спирт), растворы этиленгликоля (ЭГ), диэтиленг-ликоля (ДЭГ), триэтиленгликоля (ТЭГ), хлористого кальция, этилкарбоната и др.

Для уменьшения расхода метанола необходимо вводить его в начале зоны возможного гидратообразования в газопроводе. Экономически выгодно метанол применять при небольших расходах газа, когда из-за высоких капиталовложений нераци­онально использовать другие методы. Метанол можно вводить в сочетании с другими средствами, например с осушкой газа или с понижением давления. Использование метанола для пре­дупреждения образования гидратов в газопроводе при боль­ших объемах транспортируемого газа экономически невыгод­но. Ввод ингибиторов в газовый поток широко применяют на промыслах для предупреждения образования гидратов в сепа­раторах, теплообменниках и других дегидраторных аппаратах, а также в скважинах. При этом предпочтение следует отдать диэтиленгликолю, так как возможность его регенерации и срав­нительно небольшие потери в большинстве случаев делают этот ингибитор наиболее экономичным.

Осушка газа является наиболее эффективным и экономич­ным способом предупреждения образования кристаллогидра­тов в магистральных газопроводах при больших объемах транс­портируемого газа. При промысловой подготовке газа к даль­нему транспорту его осушают сорбционным способом или охлаждением газового потока. В результате осушки точка росы паров воды должна быть снижена ниже минимальной температуры при транспортировке газа. Влажность газа дол­жна составлять не более 0,05 — 0,1 г/м3.

Абсорбенты — жидкие сорбенты, применяемые для осуш­ки природных и нефтяных газов. Они должны иметь высокую растворимость в воде, низкую агрессивность, стабиль­ность по отношению к газовым компонентам, простоту реге­нерации, малую вязкость, низкую упругость паров при тем­пературе контакта, слабое поглощение углеводородных ком­понентов газа, пониженную способность к образованию пены или эмульсий. Большинству этих требований отвечает диэтиленгликоль, триэтиленгликоль и в меньшей степени этиленгликоль [36, 37, 38].

Диэтиленгликоль получают реакцией соединения двух мо­лекул ЭГ с образованием молекулы воды. В химически чис­том виде это бесцветная жидкость с молекулярной массой 106,12, относительной плотностью (по воде) 1,117 и темпера­турой кипения 518 К при р = 0,1013 МПа.

Как показали эксперименты в лабораторных и промыш­ленных условиях, максимальное понижение точки росы газа при осушке ДЭГ обычно не превышает 308 К, что довольно часто оказывается недостаточным. В связи с разработкой газовых месторождений с высокой пластовой температу­рой газа потребовался более сильный поглотитель влаги — ТЭГ. Его получают соединением трех молекул ЭГ с образо­ванием воды. Молекулярная масса ТЭГ 150,17, относитель­ная плотность (по воде) 1,1254 и температура кипения 560,4К при р = 0,1013 МПа.

Гликоли хорошо отбирают влагу из газов в большом интер­вале концентраций. Вследствие низкой упругости паров поте­ри поглотителя незначительные: 5—18и2 — 4гна 1000 м3 газа для ДЭГ и ТЭГ соответственно. Температура кипения и упру­гость паров воды и гликолей сильно различаются, что облегча­ет регенерацию поглотителя, а небольшая вязкость поглотите­ля облегчает работу циркуляционных насосов. Обводненные гликоли неагрессивны в коррозионном отношении. Раствори­мость природного газа в них незначительная: при давлении до 15 МПа она не превышает 6 г на 1 л гликоля. При атмосфер­ном давлении ДЭГ начинает распадаться при 437 К, а ТЭГ — при 478 К. В соответствии с этим в производственных услови­ях степень их регенерации может достигать 96 — 99 %. ТЭГ имеет склонность к пенообразованию, для борьбы с этим при­меняют различные присадки, например моноэтаноламин. Ин­тенсивность процесса осушки газа гликолями находится в пря­мой зависимости от давления, температуры контакта газ — сорбент и концентрации сорбента.

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19