Погружной электронасос по принципу действия не отли­чается от обычных центробежных насосов, применяемых для перекачки жидкости. Он представляет собой набор лопаток (ступеней), составляющих ротор насоса и направляющих ап­паратов, являющихся статором. Лопатки и элементы, состав­ляющие статор, изготовляют из чугуна.

Во время работы насоса жидкость, поступающая через всасывающие отверстия к центральной открытой части рабо­чего колеса, попадает на его лопатки и увлекается ими в полость насоса, где приобретает вращательное движение. Под влиянием центробежной силы и от воздействия лопаток час­тицы жидкости с большой скоростью отбрасываются к пери­ферии вращающегося колеса и затем наружу. Выбрасывае­мая из колеса жидкость обладает большой скоростью и, сле­довательно, значительной кинетической энергией — энерги­ей движения. Для преобразования этой энергии в энергию давления служат специальные направляющие устройства — лопаточные диффузоры, устанавливаемые за рабочим коле­сом. Жидкость, протекая между этими лопатками, плавно изменяет направление движения, постепенно теряет скорость и отводится в следующую ступень.

Рабочие колеса погружных насосов имеют небольшой диа­метр, и вследствие этого напор жидкости, создаваемый одной ступенью, не превышает 3,5 —5,5 м. Поэтому для обеспечения напора в 800— 1000 м в корпусе насоса монтируют по 150 — 200 ступеней, а в тех случаях, когда необходим больший на­пор, применяют двухсекционные или трехсекционные насосы.

Погружные центробежные электронасосы (ЭЦН) применя­ют для работы в скважинах, закрепленных обсадными труба­ми диаметрами 140, 146 и 168 мм с внутренними диаметрами соответственно 121,7, 124 и 144,3 мм. Для эксплуатации сква­жин, в продукции которых содержится большое количество песка (до 1,0 % от количества извлекаемой жидкости), центро­бежные насосы изготовляют в износостойком исполнении.

К основным параметрам погружного насоса относятся его подача О и развиваемый напор Н. Величина напора характе­ризует высоту, на которую жидкость может быть поднята с помощью данного насоса. Напор и подача, — взаимозависи­мые величины: чем выше развиваемый данным насосом на­пор, тем ниже его подача. Это хорошо видно из рис. 3.11.


Рис. 3.11. Рабочая харак­теристика ЭЦН

Например, насос, рабочая характеристика которого показана на этом рисунке, способен поднять воду на высоту 1150 м, но при этом он будет работать вхолостую (Q = 0). Если напор приближается к нулю, то насос способен перекачивать до 500 м3/сут жидкости. С увеличением напора подача насоса снижается, а при снижении увеличивается; КПД η насоса в обоих случаях несколько снижается.

Для каждого насоса имеется рабочая область, при которой достигается максимальный КПД установки. В рассматривае­мом примере максимальный КПД составляет 55 %. При этом Q = 250 м3/сут, Н = 800 м.

Промышленностью выпускаются насосы, рассчитанные на напор от 450 до 1500 м и подачу от 40 до 700 м3/сут.

Приводом ЭЦН служат погружные электродвигатели трех­фазные, асинхронные с короткозамкнутым ротором. При ча­стоте тока 50 Гц синхронная частота вращения их вала со­ставляет 3000 об/мин.

Так как диаметр корпуса двигателя ограничен внутрен­ним диаметром эксплуатационной колонны (121,7—144,3 мм), с целью обеспечения необходимой мощности длина их со­ставляет 4,2 — 8,2 м. Мощности выпускаемых погружных дви­гателей в зависимости от типа насоса могут быть от 14 до 125 кВт, их диаметр — от 103 до 123 мм.

Гидрозащита — один из важнейших узлов погружного аг­регата. Она предохраняет электродвигатель от попадания в его полость пластовой жидкости. Это достигается тем, что в полости электродвигателя, заполненного жидким мас­лом, создается давление, превышающее давле­ние окружающей среды. Гидрозащита компен­сирует также утечки масла из двигателя и обес­печивает подачу масла к подшипникам насоса.


Рис. 3.12. Вин­товой насос

Подбор скважины для применения погруж­ного насоса производится на основании дан­ных ее исследования, в результате которого определяется ее дебит и динамический уровень при этом дебите, что соответствует напору, который должен развивать насос.

Электронасос спускают в скважину после очистки ее забоя от грязи и осадков. Затем подъемные трубы заполняют до устья жидко­стью и после этого включают двигатель. Об­служивание скважины, эксплуатируемой цент­робежными насосами, состоит в проверке по­дачи насоса и контроле за работой электро­оборудования. В последнее время на практике стали ис­пользоваться погружные винтовые насосы. Ус­тановка винтового насоса состоит из тех же узлов, что и установка погружного центробеж­ного насоса, т. е. из погружного агрегата (дви­гатель, гидрозащита, насос), кабеля, оборудова­ния устья, автотрансформатора и станции уп­равления. Вместо центробежного насоса в под­земном агрегате используется винтовой насос. Кроме того, в установках погружных винтовых электронасосов (УЭВН) применяют четырехполюсные погружные электродвигатели с часто­той вращения вала (синхронной) 1500 об/мин. Конструктивно двигатели идентичны двигате­лям центробежных насосов.

В состав погружного винтового насоса (рис. 3.12) входят следующие основные узлы и дета­ли: пусковая муфта 1, с помощью которой вал насоса через вал протектора соединяется с ва­лом погружного электродвигателя; эксцентри­ковые муфты 2 и 5; правые и левые обоймы 3 и 6 с винтами 4 и 7; предохранительный клапан 8 и труба 9. Его рабочими органами являются однозаходные стальные винты и резинометаллические обоймы, внутренняя полость которых представляет собой двухзаходную винтовую поверхность с шагом, в 2 раза большим шага винта.

Прием жидкости из скважины ведется через две фильт­рованные сетки. Нагнетаемая жидкость поступает в полость между винтами и за обоймой 6 проходит к предохранитель­ному клапану 8 и далее в подъемные трубы. Винт, вращаясь в обойме, совершает сложное планетарное движение. За один оборот винта замкнутые полости, имеющие винтооб­разную форму, перемещаются с заключенной в них жидко­стью на один шаг обоймы в осевом направлении в сторону нагнетания. При вращении винта непрерывно открываются и закрываются полости, образуемые винтом и обоймой. При этом сумма заполненных жидкостью выходных площадей поперечного сечения винта с обоймой остается постоянной и поток жидкости всегда непрерывен и пропорционален частоте вращения винта. Жидкость перекачивается практи­чески без пульсаций, не создавая стойкой эмульсии из не­фти с водой.

Винтовой насос — насос объемного действия. Его теоре­тическая подача прямо пропорциональна частоте вращения винта. Так как винт, вращаясь, в осевом направлении не перемещается, то, естественно, жидкость, заполняющая впа­дины винтовой полости обоймы, будет поступать из одной впадины в другую в соответствии с шагом винта. Таким образом, за один оборот винт 2 раза перекроет камеры в обойме, т. е. вытеснит из нее две определенные порции жидкости. Осевое перемещение жидкости за один оборот винта равно Г, следовательно, подача насоса за один оборот q = 4eDT, (3.4)

где 4eDTплощадь поперечного сечения потока жидкости. Для насосов, работающих по сдвоенной схеме (см. рис. 3.11), подача насоса за один оборот составит

q2 = 2∙4eDT. (3.5)

Подача насоса за 1 сут

Q = 1440∙4еDTnηо6. (3.6)

В этих формулах е — эксцентриситет винта; Dдиаметр сечения винта; Г — шаг обоймы; л — частота вращения вала насоса; η о6 — объемный КПД насоса.

Если размеры насоса принимать в метрах (м), то подача его будет в кубических метрах в сутки (м3/сут). Объемный коэф­фициент полезного действия насоса принимается равным 0,7 — 0,9. Эта величина зависит от характера посадки винта в обой­ме (с натягом или с зазором), от характеристики резины и развиваемого насосом напора. На российских промыслах по­гружные винтовые электронасосы применяют для скважин со 146-мм или 168-мм обсадными колоннами и минимальными внутренними диаметрами соответственно 121,7 и 130 мм.

Погружной электронасос сочетает в себе положительные качества центробежного и поршневого, обеспечивая плав­ную, непрерывную подачу жидкости без пульсации, с посто­янным высоким КПД при широком диапазоне изменения давления. Характерная особенность винтовых насосов — зна­чительное улучшение параметров с увеличением вязкости пе­рекачиваемой жидкости. Поэтому наиболее эффективны эти насосы при добыче вязкой и высоковязкой жидкости. Одним из достоинств погружного электронасоса является то, что он обеспечивает стабильные параметры при добыче нефти с высоким газовым фактором, и даже попадание свободного газа на прием насоса не приводит к срыву добычи нефти.

Конструкция и оборудование газовых и газоконденсатных скважин имеют много общего с нефтяными скважинами, которые эксплуатируются фонтанным или компрессорным способом. В обоих случаях оборудование скважин состоит из колонны подъемных труб, спускаемых до фильтровой зоны, и устьевой арматуры. При эксплуатации газовых скважин обычно применяют арматуру крестового типа, наиболее удобную для монтажа и обслуживания.

Подъемные трубы спускают с целью: а) предохранения эксплуатационной колонны от истирания и разъедания при наличии в газе твердых примесей или агрессивных компо­нентов, вызывающих коррозию; б) выноса жидких и механи­ческих примесей с забоя на поверхность; в) облегчения про­цесса освоения и глушения скважины при необходимости проведения подземного ремонта; г) проведения различного рода исследовательских работ, связанных со спуском в сква­жину приборов.

Эксплуатацию скважин, как правило, ведут через подъем­ные трубы, но при значительных дебитах и отсутствии в газе твердых примесей или агрессивных компонентов скважины во многих случаях одновременно эксплуатируются через подъемные трубы и затрубное пространство.

Газовые скважины осваивают теми же способами, что и нефтяные. Часто применяют аэрацию или компрессорный способ освоения скважины с помощью передвижных комп­рессоров.

Режим эксплуатации газовой скважины, определяемый ее промышленным дебитом, устанавливают на основании дан­ных исследования.

При исследовании измеряют давление, температуру, де­бит газа, фиксируя параметры работы скважины при каж­дом режиме. Изменение режима, а также регулирование работы газовой скважины осуществляется созданием опре­деленного противодавления на устье. Для этой цели приме­няют штуцеры.

Промышленный дебит газовой скважины приходится огра­ничивать, так как при чрезмерном отборе газа могут проис­ходить следующие осложнения [9]:

1) разрушение призабойной зоны, вынос частиц породы в скважину, образование песчаной пробки;

2) обводнение скважины краевой или подошвенной водой;

3) вынос в призабойную зону кристаллов соли, ила и ее закупорка;

4) чрезмерное охлаждение газа, обмерзание оборудования, гидратообразование;

5) значительное понижение давления внутри скважины и опасность смятия колонны под действием внешнего давления;

6) неудовлетворительное состояние скважины (некачествен­ное цементирование, негерметичность, обводнение чужерод­ной водой).

На основании результатов исследования подбирается и ре­гулируется дебит всех эксплуатационных газовых скважин.

Работа газовой скважины контролируется путем требуе­мых замеров, регистрацией рабочих параметров и анализом результатов периодических исследований. Газ из отдельных скважин после замера и сепарации его от влаги и твердых примесей направляется в промышленный газосборный кол­лектор и далее в газосборный пункт, откуда после соответ­ствующей подготовки его для дальнейшего транспортирова­ния поступает в магистральный газопровод.

В пластовых условиях в газе газовых месторождений со­держатся пары воды. В газе газоконденсатных месторожде­ний содержатся также пары конденсата, которые в пласто­вых условиях находятся в насыщенном состоянии, а иногда и в ненасыщенном.

При отборе газа из пласта, сопровождающемся понижени­ем его температуры и давления, происходит конденсация паров воды и накопление ее в скважинах и газопроводах. При определенных условиях компоненты природного газа (метан, этан, пропан, бутан) взаимодействуют с водой и обра­зуют твердые кристаллические вещества, называемые гидра­тами. Каждая молекула перечисленных компонентов способ­на связать шесть-семь молекул воды, например, СН4∙6Н2О, С2Н6∙7Н2О и т. д. По внешнему виду гидраты напоминают снег или лед. Они относятся к неустойчивым соединениям и при некоторых условиях (нагревании, понижении давления) быстро разлагаются на газ и воду.

Образование гидратов происходит при повышенных дав­лениях, низкой температуре и тесном контакте гидратообразующих компонентов газа с водой.

В условиях высокого давления гидраты не могут существо­вать при температуре выше критической. Образовавшиеся гидраты могут закупорить скважины, газопроводы, сепарато­ры, нарушить работу измерительных и регулирующих прибо­ров. Очень часто вследствие образования гидратов выходят из строя штуцера и регуляторы давления, дросселирование газа в которых сопровождается понижением давления. Это нарушает нормальную работу газопромыслового оборудова­ния, особенно при низких температурах окружающей среды.

Борьба с гидратами ведется в двух направлениях: 1) пре­дупреждение образования гидратов; 2) ликвидация образо­вавшихся гидратов.

Для предотвращения образования гидратов в скважинах применяют следующие методы:

а) устанавливают соответствующий технологический ре­жим эксплуатации скважины;

б) непрерывно или периодически нагнетают на забой сква­жины антигидратные ингибиторы;

в) применяют футерованные насосно-компрессорные (подъем­ные) трубы;

г) систематически удаляют с забоя скапливающуюся жид­кость;

д) устраняют причины, вызывающие пульсацию газа в скважине.

Ствол скважины очищают от гидратных отложений следу­ющим образом:

продувкой в атмосферу с необходимой предварительной вы­держкой скважины в закрытом состоянии с целью частичного разложения гидратов под влиянием тепла окружающих пород;

закачкой большого объема антигидратного ингибитора не­посредственно на гидратную пробку с выдержкой для разло­жения гидратной пробки и с последующей продувкой в ат­мосферу.

Предупреждают образование гидратов в фонтанной арма­туре и обвязке скважин, а также в различных участках, узлах и звеньях системы сбора и транспорта газа (в зависи­мости от конкретных условий) следующими методами, при­меняемыми самостоятельно или комплексно:

а) обогревом отдельных узлов и участков;

б) вводом в поток газа ингибиторов — метанола, раствора хлористого кальция, диэтиленгликоля и др.;

в) устранением резких перепадов давления, которые вы­зывают снижение температуры газа, ведущее к конденсации парообразной влаги и образованию гидрата;

г) систематическим удалением жидкости, скапливающейся в пониженных местах системы сбора и внутрипомыслового транспорта газа, при помощи конденсатосборников или дре­нажных патрубков;

д) регулярной продувкой газопроводов от окалины, грязи и т. п, в местах скопления которых образуются кристаллы гидратов.

К наиболее эффективным и распространенным из пере­численных способов предупреждения образования гидратов относится способ ввода в газовый поток метанола, т. е. мети­лового спирта (СН3ОН), являющегося понизителем точки за­мерзания паров воды. Метанол вместе с парами воды, насы­щающей газ, образует спиртоводные растворы, температура замерзания которых значительно ниже нуля. Так как количе­ство водяных паров, содержащихся в газе, при этом умень­шается, точка росы понижается и, следовательно, опасность выпадения гидратов становится меньше.

В природных газах кроме паров воды и конденсата могут содержаться также различные твердые примеси (песок, кри­сталлы солей). Твердые частицы в газе разъедают и истирают оборудование и газопроводы, нарушают герметичность арма­туры. Для очистки газа от жидких и твердых примесей у скважин устанавливают газосепараторы. По принципу дей­ствия различают газосепараторы гравитационные и центро­бежные (циклонные).

Гравитационные аппараты бывают вертикальные и гори­зонтальные.

Вертикальные гравитационные аппараты рекомендуют для сепарации газов, содержащих твердые частицы и тяжелые смолистые фракции, так как они имеют лучшие условия очи­стки и дренажа.

В гравитационном газосепараторе отделение твердых и жидких частиц от газа происходит в результате резкого сни­жения скорости движения струи газа и повороте ее на 180°.

Схема простейшего гравитационного сепаратора показана на рис. 3.13. В этом сепараторе газ из скважины поступает по входной трубе 1 (скорость газа в нем достигает 15 — 20 м/с) и при выходе из нее поворачивает вверх по выкидной трубе 2. При этом сокращается скорость струи и твердые частицы и капли жидкости оседают на дно сосуда. Скопившиеся приме­си удаляются из сепаратора через штуцер 3.

Вертикальные сепараторы изготовляют диаметром 400 — 1650 мм, горизонтальные — диаметром 400—1500 мм при максимальном давлении 1 б МПа. При оптимальной скорости газа эффективность сепарации достигает 70 — 80 %. Опыт эк­сплуатации показал, что скорость потока газа на выходе не должна превышать 0,1 м/с при давлении 6 МПа. Из-за боль­шой металлоемкости и недостаточной их эффективности гра­витационные сепараторы применяют редко.

На рис. 3.14 схематически изображена работа циклонного сепаратора. Корпус циклона и патрубок для выхода газа об­разуют внутреннее кольцевое пространство. В нижней части выполнено отверстие для отвода осадка из циклона. При тангенциальном вводе газ в сепараторе приобретает в коль­цевом пространстве и конусе вращательное движение, вслед­ствие чего из газа выпадают механические взвеси (твердые и жидкие) и опускаются в сборный бункер. Газ с уменьшенной скоростью выходит через выходной патрубок.

Производительность нефтяных и газовых скважин и по­глотительная способность нагнетательных зависят главным образом от проницаемости пород, складывающих продуктив­ный пласт. Чем выше проницаемость пород в зоне действия той или иной скважины, тем выше производительность эксп­луатационной скважины или поглотительная способность на­гнетательной скважины и наоборот.

Проницаемость пород одного и того же пласта может резко изменяться в различных его зонах или участках. Иногда при общей хорошей проницаемости пород пласта отдельные скважины вскрывают зоны с пониженной проницаемостью, в результате чего ухудшается приток нефти и газа к ним. Естественная проницаемость пород под влиянием тех или иных причин также может с течением времени ухудшаться. Так, при заканчивании скважин бурением их призабойные зоны часто загрязняются отфильтровавшимся глинистым ра­створом, что приводит к закупорке пор пласта и снижению естественной проницаемости пород. При эксплуатации не­фтяных и газовых скважин проницаемость пород в призабойной зоне может резко снизиться из-за закупорки пор парафинистыми и смолистыми отложениями, а также глини­стыми частицами.

Призабойная зона нагнетательных скважин загрязняется различными


Рис. 3.14. Гравитационный односекционный сепаратор ) и схема движе­ния газов в циклоне [б)

механическими примесями, имеющимися в зака­чиваемой воде (ил, глина, оксиды железа). Проницаемость по­род призабойной зоны скважин улучшают путем искусствен­ного увеличения числа и размеров дренажных каналов, увели­чения трещиноватости пород, а также путем удаления парафи­на, смол и грязи, осевших на стенках поровых каналов.

Методы увеличения проницаемости пород призабойных зон скважин можно условно разделить на химические, меха­нические, тепловые и физические. Часто для получения луч­ших результатов эти методы применяют в сочетании друг с другом или последовательно.

Выбор метода воздействия на призабойную зону скважин определяется пластовыми условиями. Химические методы воз­действия дают хорошие результаты в слабопроницаемых кар­бонатных породах. Их успешно применяют также в сцемен­тированных песчаниках, в состав которых входят карбонат­ные включения и карбонатные цементирующие вещества. Механические методы обработки применяют обычно в плас­тах, сложенных плотными породами, с целью увеличения их трещиноватости. Тепловые методы воздействия применяют для удаления со стенок поровых каналов парафина и смол, а также для интенсификации химических методов обработки призабойных зон [9]. Физические методы предназначены для удаления из призабойной зоны скважины остаточной воды и твердых мелкодисперсных частиц, что в конечном итоге уве­личивает проницаемость пород для нефти.

Кислотные обработки скважин основаны на способности кислот растворять некоторые виды горных пород, что приво­дит к очистке и расширению их поровых каналов, увеличе­нию проницаемости и, как следствие, — к повышению про­изводительности скважин.

Для обработки скважин в большинстве случаев применя­ют соляную (НС1) и фтористо-водородную (HF) кислоты.

При солянокислотной обработке кислота растворяет карбо­натные породы — известняки, доломиты, доломитизированные известняки, слагающие продуктивные горизонты нефтяных и газовых месторождений. Продукты реакции соляной кислоты с карбонатами, т. е. хлористый кальций (СаСl2) и хлористый магний (МgС12), вследствие их высокой растворимости не вы­падают в осадок из раствора прореагировавшей кислоты. Пос­ле обработки они вместе с продукцией скважины извлекаются на поверхность. Образующийся при реакции углекислый газ (СО2) также легко удаляется на поверхность.

При обработке пласта соляной кислотой последняя реаги­рует с породой как на стенках скважины, так и в поровых каналах, причем диаметр скважины практически не увеличи­вается. Больший эффект получают при расширении поровых каналов и очистке их от илистых и карбонатных материалов, растворимых в кислоте. Опыты показывают также, что под воздействием кислоты иногда образуются узкие кавернозные каналы, в результате чего заметно увеличиваются область дренирования скважин и их дебит. Поэтому солянокислотные обработки в основном предназначены для ввода кислоты в пласт по возможности на значительные от скважины рас­стояния с целью расширения каналов и улучшения их сообщаемости, а также для очистки порового пространства от илистых образований.

При кислотной обработке стенок скважины в пределах про­дуктивного горизонта (кислотная ванна) в целях очищения фильтрующей поверхности от глинистой и цементной корок и продуктов коррозии растворяющему действию кислоты под­вергаются уже не породы пласта, а материалы, загрязняющие поверхность забоя скважины. Механизм такого процесса сво­дится к химическому растворению загрязняющих материалов или только отдельных составляющих компонентов этих мате­риалов, растворимых в кислоте. В результате такого действия нарушается целостность отложившихся загрязняющих матери­алов, происходит их дезагрегация (распад) с переводом полно­стью или частично в состояние шлама, легко выносимого с забоя на поверхность последующей промывкой.

Для обработки скважин применяют 8 — 20%-ный раствор соляной кислоты. Наиболее часто используют 12 — 15%-ный раствор НС1. На 1 м обрабатываемой мощности пласта берут от 0,4 до 1,5 м3 солянокислотного раствора.

Так как соляная кислота разъедает металл, для предохра­нения емкостей, насосов и трубопроводов к кислоте добавля­ют специальные вещества, называемые ингибиторами, кото­рые уменьшают или сводят до минимума коррозийное воз­действие кислоты на металл. В качестве ингибиторов приме­няют различные вещества, в основном поверхностно-актив­ные (ПАВ): уникол, катапин, формалин и др. Дозировка инги­биторов составляет обычно 0,05 — 0,25 % от объема раствора соляной кислоты и зависит от типа ингибитора. Так, корро­зионное действие раствора 10%-ной соляной кислоты после добавки уникола снижается следующим образом: при дози­ровке 0,05 % — в 15 раз, при дозировке 0,25 % — в 42 раза.

В скважинах, в которых снижается производительность из-за отложений в призабойной зоне парафиновых или асфальтосмолистых веществ, кислотная обработка будет более эф­фективной, если забой предварительно прогреть, чтобы рас­плавить эти вещества. Для этого скважину предварительно промывают горячей нефтью, или производят термокислотную обработку. Термокислотная обработка — процесс комбиниро­ванный: в первой фазе его осуществляется тепловая (термохи­мическая) обработка забоя скважины раствором горячей соля­ной кислоты, при котором нагревание этого раствора произво­дится за счет теплового эффекта экзотермической реакции между кислотой и каким-либо веществом; во второй фазе термокислотной обработки, следующей без перерыва за пер­вой, производится обычная кислотная обработка.

Известно много веществ, которые реагируют с соляной кислотой — каустическая сода, карбид кальция, алюминий, однако наилучшим признан магний, так как при реакции кислоты с ним выделяется большое количество теплоты, а продукты реакции полностью растворяются.

Для растворения 1 кг магния необходимо 18,6 л 15%-ной соляной кислоты. При этом вся кислота превращается в нейтральный раствор хлористого магния, который выделен­ным теплом был бы нагрет до температуры 308 °С. Однако такая высокая температура привела бы к отрицательным явлениям, т. е. к потере тепла на парообразование с выде­лением части хлористого магния. Кроме того, для расплавле­ния парафина и смол нужна значительно меньшая темпера­тура. Поэтому рационально такое соотношение кислоты и магния, при котором конечная температура раствора после реакции была бы в пределах 75 — 80 °С. Обработку скважин в термохимической фазе так и ведут, чтобы отреагировав­шая с магнием кислота перед поступлением в пласт имела температуру около 75 — 80 °С и в то же время была бы еще достаточно активной (10— 12%-ной концентрации) для реак­ции с породами пласта.

Обычно для термокислотной обработки применяют прут­ковый магний (диаметр прутка 2 — 4 мм, длина 60 мм). Прут­ки загружают в специальный наконечник, который на на-сосно-компрессорных трубах спускают в скважину на за­данную глубину.

Солянокислотный раствор для кислотных и термокислот­ных обработок приготовляют на центральной кислотной базе или же непосредственно на скважинах.

Технология солянокислотных обработок скважин может изменяться в зависимости от физических свойств пласта, его мощности и прочих условий. В простейшем случае процесс обработки сводится к обычной закачке кислоты в пласт при помощи насоса или самотеком. Иногда перед закачкой кисло­ты в пласт для разрушения глинистой или цементной корки применяют кислотную ванну. При этом в скважину закачива­ют раствор 6 — 8%-ной кислоты с таким расчетом, чтобы он заполнил ствол скважины в интервале его обработки.

Сущность гидравлического разрыва пласта (ГРП) состоит в образовании и расширении в пласте трещин при создании высоких давлений на забое скважин жидкостью, закачивае­мой в скважину. В образовавшиеся трещины нагнетают от­сортированный крупнозернистый песок для того, чтобы не дать трещине сомкнуться после снятия давления.

Образованные в пласте трещины или открывающиеся и расширившиеся, соединяясь другими, становятся проводника­ми нефти и газа, связывающими скважину с удаленными от забоя продуктивными зонами пласта. Протяженность трещин в глубь пласта может достигать нескольких десятков метров. Образовавшиеся в породе трещины шириной 1—2 мм, запол­ненные крупнозернистым песком, обладают значительной про­ницаемостью.

Дебиты скважин после гидроразрыва пласта часто увели­чиваются в несколько раз. Операция ГРП состоит из следую­щих последовательно проводимых этапов:

1) закачка в пласт жидкости разрыва для образования трещин;

2) закачка жидкости-песконосителя;

3) закачка жидкости для продавливания песка в трещины.

Обычно в качестве жидкости разрыва и жидкости-песко­носителя применяют одну и ту же жидкость. Поэтому для упрощения терминологии обычно эти жидкости называются жидкостями разрыва.

Жидкости разрыва в основном применяют двух видов: углеводородные жидкости и водные растворы.

Иногда используют водонефтяные и нефтекислотные эмульсии.

Углеводородные жидкости применяют в нефтяных сква­жинах. К ним относятся: сырая нефть повышенной вязкости; мазут или его смесь с нефтями; дизельное топливо или сырая нефть, загущенные нефтяными мылами.

Водные растворы применяют в нагнетательных скважи­нах. К ним относятся — вода; водный раствор сульфит-спиртовой барды; растворы соляной кислоты; вода, загущен­ная различными реагентами; загущенные растворы соляной кислоты.

При выборе жидкости разрыва в основном учитывают такие параметры, как вязкость, фильтруемость и способность удерживать зерна песка во взвешенном состоянии.

Так как при незначительной вязкости для достижения дав­ления разрыва требуется закачка в пласт большого объема жидкости, необходимо использовать несколько одновременно работающих насосов. Если вязкость жидкости превышает допустимые значения, для образования трещин необходимы высокие давления, так как с увеличением вязкости растут потери при прокачке жидкости по трубам.

Песок для заполнения трещин при ГРП должен удовлетво­рять следующим требованиям: 1) иметь высокую механичес­кую прочность, чтобы образовывать надежные песчаные по­душки в трещинах, и не разрушаться под действием веса пород; 2) сохранять высокую проницаемость. Таким является крупнозернистый, хорошо окатанный и однородный по со­ставу кварцевый песок с размерами зерен от 0,5 до 1,0 мм.

Требуемое количество песка для закачки в пласт зависит от степени трещиноватости пород. В сильнотрещиноватые породы (известняки и доломиты) закачивается до нескольких десятков тонн песка. Значительное количество песка закачи­вают также и в рыхлые породы, обычно уже дренированные при предыдущей эксплуатации и предрасположенные к пробкообразованию. В пласты, сложенные из песчаников и мало­трещиноватых известняков, целесообразно закачивать 8 — 10 т песка на скважину. В отдельных случаях это количество умень­шают до 4 — 5 т или, наоборот, увеличивают до 20 т. Концен­трация песка в жидкости-песконосителе, в зависимости от ее фильтруемости и удерживающей способности, может коле­баться от 100 до 600 кг на 1 м3 жидкости.

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19