Утяжеленные бурильные трубы (УБТ) устанавливают над долотом (турбобуром, электробуром) в целях увеличения же­сткости нижней части колонны. Их применение позволяет создать нагрузку на долото коротким комплектом соединен­ных между собой толстостенных труб, что улучшает условия работы бурильной работы.

Изготовляют УБТ двух типов: гладкие по всей длине (рис. 2.10, а) и с конусной проточкой (рис. 2.10, б) для лучшего захвата их клиньями во время спуска и подъема бурильной колонны. Комплект утяжеленных бурильных труб имеет одну наддолотную трубу 2 с выполненной на обоих концах внут­ренней замковой резьбой и несколько промежуточных труб 1, снабженных на верхнем конце внутренней, а на нижнем — наружной замковой резьбой.

Рис. 2.10. Утяжеленные бурильные трубы

Переводники предназначены для соединения элементов бу­рильной колонны, с различными типами резьбы.

Легкосплавные бурильные трубы. С увеличением глубины скважин стали изыскивать пути уменьшения массы буриль­ной колонны. Стальные бурильные трубы стали заменять бурильными трубами из алюминиевых сплавов. Выпускаются легкосплавные бурильные трубы с высаженными внутрь кон­цами диаметрами 73, 93, 114 и 147 мм. На концах этих труб нарезается стандартная трубная резьба. Свинчиваются они при помощи стальных бурильных замков особой конструк­ции. Применение легкосплавных бурильных труб позволило уменьшить массу колонны примерно в 2 раза.

Для вращения долота применяются роторы, турбобуры и электробуры. Рассмотрим схему устройства и работы рото­ров. Роторы предназначены для передачи вращательного дви­жения бурильной колонне и, следовательно, долоту; для под­держания на весу бурильной колонны во время бурения; при спуско-подъемных и вспомогательных работах и обсадной колонны при спуске ее в скважину. Поэтому роторы должны обеспечивать необходимую частоту вращения долота, а их грузоподъемность должна превышать вес наиболее тяжелой колонны — бурильной или обсадной [9].

Ротор (рис. 2.11) состоит из станины /, во внутренней полости которой установлен на шариковом подшипнике стол 2 с укрепленным зубчатым коническим венцом, вала 6 с цепным колесом с одной стороны и конической шестерней — с дру­гой, кожуха 5, ограждающего периферийную часть вращаю­щегося стола, вкладышей 4 и зажимов 3 для ведущей трубы.

Диаметр отверстия в столе ротора определяет максималь­ный диаметр долота, которое может пройти через него. В связи с этим выпускают роторы с различными диаметрами проходного отверстия (от 400 до 700 мм). В центральное отверстие вставляют два вкладыша 4, а внутрь — два зажима 3, В образовавшемся между зажимами отверстии квадратного сечения свободно размещается ведущая труба также квадратного сечения. Поэтому ведущая труба имеет возможность свободно перемещаться вдоль оси ротора и воспринимать вращающий момент от стола ротора.

Для смазки трущихся деталей и отвода тепла, образующе­гося при работе зубчатых передач и подшипников, в корпус ротора заливается масло.

При турбинном бурении долото приводится во вращение забойным двигателем — турбобуром, преобразующим гидрав­лическую мощность потока промывочной жидкости, поступа­ющей из бурильной колонны, в механическую работу враща­ющегося вала турбобура и долота.

Турбобур — многоступенчатая турбина (число ступеней от 25 до 350). Каждая ступень турбины состоит из статора, жестко соединенного с корпусом турбобура, и ротора, укрепленного на валу турбобура. В статоре и роторе поток жидкости меняет направление движения и, перетекая из ступени в ступень, отда­ет часть гидравлической мощности каждой ступени. В результа­те мощность, создаваемая всеми ступенями, суммируется на валу турбобура и подводится к долоту. Расчеты показали, что для эффективной работы турбобура необходимо иметь около 100 турбин, т. е. 100 роторов и 100 статоров. С увеличением числа турбин не только повышаются мощность и вращающий момент, но и снижается частота вращения вала турбобура [9].

Проследим путь движения промывочной жидкости. Из бу­рильной колонны промывочная жидкость через переводник попадает в корпус турбобура, проходит через отверстия в неподвижном подпятнике и поступает в первый статор, а затем в первый ротор турбины, во второй статор и во второй ротор турбины. Так, последовательно переходя из турбины в турбину и через отверстия в двух средних опорах, жидкость попадает внутрь вала турбобура и движется к долоту. Попав на забой скважины через отверстия в долоте, жидкость зах­ватывает обломки выбуренной породы и по затрубному про­странству (по пространству между бурильной колонной и стенкой скважины) устремляется вверх к устью скважины.

На базе односекционных турбобуров созданы двух-, трех,-и четырехсекционные турбобуры, имеющие соответственно до 230, 270 и 280 турбин.

Для бурения скважин турбинным способом с отбором кер­на разработаны колонковые турбобуры (турбодолота), пре­дусматривающие применение съемной грунтоноски. Колонковый турбобур представляет собой турбобур с полым валом, на конец которого навинчивается бурильная головка. В верх­ней части головки грунтоноски имеется бурт для захвата ее ловителем, спускаемым в бурильную колонну при помощи лебедки. В остальном конструкция колонковых турбобуров аналогична конструкции обычных турбобуров. В России вы­пускаются турбобуры с наружным диаметром от 102 до 235 мм, что позволяет применять их при бурении скважин доло­тами различных диаметров.

Электробур — забойный двигатель, предназначенный для передачи долоту вращательного движения. Он состоит из электродвигателя и шпинделя. Вращаю­щий момент двигателя передается на вал шпинделя через зубчатую муфту. Элек­тробур с долотом спускается в скважи­ну на бурильных трубах, которые слу­жат не только для поддержания его на весу, восприятия реактивного момента и подачи забою промывочной жидко­сти, но и для размещения токоподводящего кабеля.

Электробур (рис. 2.12) состоит из двух основных узлов — электродвигателя и шпинделя. В верхний проводник 13 поступает промывочная жидкость из бурильной колонны и через полости между луб­рикаторами 14 и 25 и их корпусом 12 поступает вовнутрь полого вала электродвигателя 1 к долоту. Промывочная жид­кость, проходя через отверстие в долоте, подхватывает об­ломки выбуренной породы по затрубному пространству и поднимает их на поверхность. Защита электродвигателя от влаги осуществляется заполнением внутренней полости мас­лом под действием поршня лубрикатора 15. Полый вал элек­тродвигателя 1 соединен с полым валом шпинделя 29 зубча­той муфтой 27.

В настоящее время выпускают электробуры с диаметрами корпуса 250, 215 и 170 мм для бурения скважин долотами соответственно диаметрами 295, 243 и 190 мм.

Периодическую промывку скважин начали применять со второй половины XIX в., когда был изобретен ударный спо­соб бурения скважин. При этом было доказано, что наилуч­шая очистка забоя от выбуренной породы достигается при доливании в скважину небольшого количества воды.

Применение вращательного способа бурения скважин при­вело к необходимости непрерывной промывки их в процессе бурении. Вода была первой промывочной жидкостью и при этом способе бурения.

Развитие технологии бурения показало, что при разбуривании глин и глинистых отложений образующийся в скважи­не глинистый раствор значительно облегчает процесс проход­ки скважины. Поэтому стали не только сохранять глинистый раствор, образовавшийся в скважине, но и искусственно при­готовлять его на поверхности [9].

С ростом глубины скважин требования к их промывке все более возрастали, что обусловило создание новых промывоч­ных жидкостей.

Основные функции промывочных жидкостей:

1) вынос разбуренных частиц породы на поверхность;

2) удерживание частиц выбуренной породы во взвешен­ном состоянии при прекращении циркуляции;

3) создание противодавления на стенки скважины, а сле­довательно, предотвращение обвалов породы и предупрежде­ние проникновения в скважину газа, нефти и воды из разбу­риваемых пластов;

4) глинизация стенок скважины;

5) охлаждение долота, турбобура, электробура и буриль­ной колонны;

6) смазка трущихся деталей долота, турбобура;

7) передача энергии турбобуру;

8) защита бурового оборудования и бурильной колонны от коррозии.


Рис. 2.12. Электробур с маслонаполненным шпин­делем:

1 — вал электродвигателя;

2, 5 — радиальные подшипники;

3, 30 — опорные подшипники;

4, 6 — секции электродвигателя;

7 — обмотка ста­тора; 8 — диамагнитный пакет;

9, 10, 11 — соот­ветственно верхняя, средняя и нижняя части кор­пуса;

12 — корпус лубрикаторов; 13, 37 — пере­водники;

14, 25 — лубрикаторы; 15, 33 — пор­шень лубрикатора;

16,34 — пружина лубрикато­ра;

17, 18 — сальниковые уплотнения;

19 — пара торцовая уплотнения;

20 — кабельный ввод; 21 — контактный стержень;

22 — уплотнение ввода кабеля;

23 — предохранительный стакан;

24 — опора контактного стержня;

26 — корпус шпинделя; 27 — соединительная муфта;

28 — роликовая опора; 29 — вал шпинделя;

31 — ре­зиновый амортизатор;

32 — лубрикатор шпинде­ля;

35 — втулка с уплотнением; 36 — сальник шпинделя;

38 — долото

Промывочная жидкость должна быть инертной к воздей­ствию температуры, минерализованных пластовых вод и об­ломков выбуренной породы.

Промывочные жидкости классифицируются следующим образом:

1) на водной основе, представителями которой являются вода и глинистые растворы;

2) на неводной основе, к которым относятся углеводород­ные растворы (нефтяные);

3) аэрированные жидкости.

Вода в качестве промывочной жидкости может быть при­менена в районах, где геологический разрез сложен тверды­ми породами, не обваливающимися в скважину без глиниза­ции ее стенки. В этих условиях промывка скважины водой становится наиболее выгодной из-за ее малой вязкости и относительно небольшой плотности. В результате уменьша­ются гидравлические сопротивления в бурильной колонне, турбобуре, долоте и затрубном пространстве, улучшаются ус­ловия работы буровых насосов, повышается их подача и уве­личивается мощность турбобура.

Однако как промывочная жидкость вода имеет два суще­ственных недостатка. Во-первых, возникает опасность при­хвата бурильной колонны, так как вода не способна удержи­вать во взвешенном состоянии обломки выбуренной породы при прекращении циркуляции. Во-вторых, могут быть обвалы пород со стенок скважины, так как вода не обеспечивает должного гидростатического давления. Кроме того, обвалы объясняются физико-химическим воздействием воды на по­роду, слагающую стенку скважины.

Следует отметить, что при разбуривании продуктивного нефтеносного пласта нельзя промывать скважину водой, так как интенсивная ее фильтрация в пласт затрудняет впослед­ствии вызов притока нефти из пласта в скважину после окончания ее бурения.

Глинистые растворы приготовляют из глины и воды. Од­нако для приготовления качественного раствора пригодна не всякая глина. Глина представляет собой смесь глинистых материалов, придающих ей пластичность, и твердых минера­лов (песка, карбонатов), усложняющих процесс приготовле­ния качественного глинистого раствора. Наиболее распрост­раненные глинистые минералы, входящие в состав глин: као­линит Al2O3∙2SiO2 ∙2H2O, галлуизитАl2О3∙2SiO2∙ЗН2О, монтмо­риллонит Al2O3 ∙4SiO2 ∙2H2O.

При большом содержании твердых минералов (примесей) глины превращаются в мергели, глинистые пески и другие осадочные горные породы, обладающие незначительной пла­стичностью.

Во всех глинах присутствует химически связанная вода, образующая на поверхности глинистых частиц слой гидроксильных групп ОН, которые обладают большой полярнос­тью. Химически связанная вода глинистых материалов удаля­ется только при прокаливании до температуры 500 — 700 °С. После этого вернуть глине пластические свойства нельзя.

Гидроксильные группы ОН создают вокруг частиц сильное поле притяжения. Под действием притяжения к поверхностям глинистых частиц притягиваются молекулы воды. Эта вода в отличие от химически связанной воды называется физически связанной. Физически связанная вода почти полностью удаля­ется при нагревании до 100— 150 °С. Однако при этом перво­начальные пластические свойства глины почти не теряются.

Глинистые частицы имеют вид плоских чешуйчатых плас­тинок. Следовательно, площадь контакта при их соприкосно­вении намного больше, чем при сближении зерен песка, имеющих округлую форму. При смачивании глины водой молекулы воды проникают между пластинками глины и раз­двигают их. Вследствие этого объем глины увеличивается за счет ее набухания, глинистые частицы удаляются друг от друга, силы притяжения между ними ослабевают и глинис­тый комочек распадается на мельчайшие частицы, покрытые водной оболочкой. Так происходит раздробление (дисперги­рование) глины в воде и образование глинистого раствора.

Таким образом, для получения глинистого раствора хоро­шего качества необходимо применять высокосортную глину и совершенные методы приготовления глинистого раствора. Качество глинистого раствора характеризуется многими па­раметрами: плотностью, вязкостью, водоотдачей, статическим напряжением сдвига и др.

Плотность — параметр, с помощью которого определяет­ся гидростатическое давление, создаваемое столбом раствора в скважине на данной глубине.

В неосложненных условиях бурения плотность раствора поддерживается на уровне 1,18— 1,2 г/см3. При разбуривании горизонтов, предрасположенных к обвалам пород, плотность раствора увеличивают. Для утяжеления промывочной жидко­сти применяют минералы барит (плотность которого 4,5 г/см3) и гематит (плотность 5,19 — 5,28 г/м3). При прохождении тре­щиноватых кавернозных пластов, наоборот, плотность промы­вочной жидкости уменьшают.

Вязкость — параметр, характеризующий свойство раство­ра оказывать сопротивление его движению.

При бурении в пористых, трещиноватых породах с не­большим пластовым давлением, поглощающих промывочную жидкость, высокая вязкость последней способствует закупор­ке пор и каналов в пласте. При бурении в пластах, содержа­щих газ, приходится уменьшать вязкость для лучшего про­хождения пузырьков газа через столб жидкости.

Водоотдача — способность раствора при определенных условиях отдавать воду пористым породам.

При бурении скважины глинистый раствор под влияни­ем перепада давления проникает в поры пластов и со вре­менем закупоривает (глинизирует) их. Образовавшаяся на стенках скважины глинистая корка со временем препят­ствует проникновению в пласты даже очень мелких частиц глины, но не задерживает воду, отделяющуюся от глинис­того раствора.

Если применять глинистый раствор низкого качества, то на стенках скважины образуется толстая, рыхлая и неплот­ная корка, через которую отфильтровывается вода в пласт. Это сужает ствол скважины, что может вызвать прилипание (прихват) бурильной колонны. Кроме того, проникновение отфильтрованной воды в породы может привести к их набу­ханию и обвалам. В связи с этим всегда стремятся макси­мально снизить водоотдачу глинистого раствора.

Статическое напряжение сдвига — усилие, которое тре­буется приложить, чтобы вывести раствор из состояния по­коя. Этот параметр характеризует прочность структуры, об­разующейся в растворе и возрастающей с течением времени, прошедшего с момента перемешивания глинистого ра­створа. Определяют его 2 раза: 1) через 1 мин после интен­сивного перемешивания; 2) через 10 мин после перемешива­ния. Статическое напряжение сдвига определяют прибора­ми разного типа.

При нормальных условиях бурения рекомендуется поддер­живать статическое напряжение не более 20 мг/см2. Глинис­тый раствор с большим статическим напряжением сдвига (до 200 мг/см2 и более) применяется для предупреждения поглощения глинистого раствора в пористые пласты.

Стабильность характеризует способность раствора сохра­нять плотность длительное время.

Для измерения стабильности раствор наливают в цилинд­рический сосуд, имеющий отверстия в дне и в средней час­ти. После его отстаивания в течение 24 ч определяют плот­ность раствора из проб, отобранных из верхней и нижней частей сосуда. Разница в значениях плотности раствора ха­рактеризует меру стабильности. Для неосложненных условий бурения стабильность должна быть не более 0,02.

Суточный отстой характеризует коллоидные свойства про­мывочной жидкости. Для его определения хорошо переме­шанный раствор наливают в градуированный цилиндр объе­мом 100 см3 и оставляют в покое на сутки. Для высококаче­ственного раствора значение суточного отстоя должно быть равно нулю [9].

Содержание песка — это количество в растворе частиц породы, не способных растворяться в воде. Определяют со­держание песка по объему образовавшегося осадка (в ра­створе, выходящем из скважины, в начале желобной системы и из приемного мерника, т. е. в растворе, поступающем в скважину) в специальном отстойнике при нахождении в нем разжиженного глинистого раствора.

Степень очистки раствора от выбуренной породы на по­верхности представляет собой разницу содержания песка в этих пробах (в %).

С целью улучшения качеств растворы обрабатываются хи­мическими реагентами. Большинство этих реагентов по ха­рактеру их воздействия на растворы можно разделить на две группы: 1) понизители водоотдачи растворов; 2) регуляторы структурно-механических свойств растворов (вязкости, стати­ческого напряжения сдвига).

Реагенты-понизители водоотдачи: углещелочной реагент (УЩР), сульфит-спиртовая барда (ССБ), карбоксиметилцеллюлоза (КМЦ) и т. д.

Углещелочной реагент получают из бурого угля и каусти­ческой соды (NaOH). В результате реакции между этими веществами образуются натриевые соли гуминовых кислот — гуматы натрия, являющиеся вместе с избытками каустичес­кой соды основными активными веществами реагента.

Избыток каустической соды приводит к расщеплению (пептизации) глинистых частиц. Всегда содержащаяся в глинис­том растворе физически связанная вода обволакивает вновь образовавшиеся частицы, что приводит к уменьшению водо­отдачи. Одновременно с этим на поверхностях глинистых частиц адсорбируются гуматы натрия, вследствие чего проис­ходит интенсивное утолщение гидратных оболочек. В резуль­тате этого способность к слипанию глинистых частиц резко падает, статическое напряжение сдвига уменьшается. Поэто­му глинистые растворы, чрезмерно обработанные углещелочным реагентом, в связи с высокой дисперсностью глинистых частиц являются вязкими, но бесструктурными.

Таким образом, при обработке раствора углещелочным ре­агентом следует внимательно следить за показателями вязкос­ти и статического напряжения сдвига. Уменьшение статичес­кого напряжения сдвига ниже 0,1 Па (10 мгс/см2) за 1 мин сигнализирует о необходимости прекращения химической обработки этим реагентом и принятия мер по улучшению свойств раствора. В этих целях вязкость уменьшается путем добавления воды, что приводит к росту водоотдачи, а вос­становление структурно-механических свойств осуществля­ется введением в раствор высококачественного свежеприго­товленного глинистого раствора. Вторичная обработка ра­створа в целях снижения водоотдачи может быть начата после доведения статического напряжения сдвига до значе­ний 0,2-0,3 Па (20-30 мгс/см2) за 1 мин.

Сульфит-спиртовая барда — отход целлюлозной промыш­ленности. Содержащиеся в ней лигносульфоновые кислоты и их соли хорошо снижают водоотдачу глинистых растворов, подвергшихся воздействию минерализованных пластовых вод. Действие сульфит-спиртовой барды на глинистые растворы, не содержащие минерализованных вод, менее эффективно.

Карбоксиметилцеллюлоза предназначена для обработки сильно минерализованных глинистых растворов, однако с успехом применяется и для снижения водоотдачи глинис­тых растворов, не содержащих солей. Карбоксиметилцеллюлоза представляет собой натриевую соль целлюлозно-гликолевой кислоты и получается при переработке древе­сины. Чем больше степень минерализации раствора, тем больше следует добавлять реагента. Первичную обработку раство­ра обычно проводят 10%-ным, а вторичную — 3 — 4%-ным раствором реагента.

Карбоксиметилцеллюлоза — универсальный реагент, кото­рый активно улучшает почти все параметры глинистого ра­створа.

Реагенты-регуляторы структурно-механических свойств растворов: жидкое стекло, поваренная соль, гашеная из­весть и т. д.

Жидкое стекло позволяет изменять вязкость и статическое напряжение сдвига в довольно широких пределах. Если требу­ется незначительно увеличить статическое напряжение сдвига, то добавляют жидкого стекла не более 0,75 % от объема глинистого раствора. При добавлении к глинистому раствору 2,5 — 3 % жидкого стекла можно получить высоковязкий ра­створ с большим статическим напряжением сдвига, пригодный для борьбы с поглощениями промывочной жидкости.

Поваренная соль обеспечивает значительной повышение статического напряжения сдвига растворов, пересыщенных углещелочным реагентом.

Гашеная известь даже при небольших добавках (до 5 %) вызывает резкое повышение вязкости и водоотдачи [9].

Процесс приготовления глинистого раствора зависит от применяемых материалов. Если используют комовые матери­алы, то их дробят до размеров частиц и создают условия для взаимодействия частиц глины с водой. Раствор приготовляют в механических или гидравлических мешалках на буровой или централизовано на глинозаводе.

В механических глиномешалках можно приготовить ра­створы из сырых глин или глинобрикетов. При использова­нии порошкообразных глин для приготовления глинистого раствора применяют гидравлическую мешалку. В России наи­более распространены гидравлические мешалки типа ГДМ-1.

Гидравлическая мешалка (рис. 2.13) состоит из воронки / для загрузки порошков, камеры смешения 4 с соплом 5, бака 2 и общей сварной рамы 3. В камере смешения через сопло подводится вода или раствор под давлением 2 — 3 МПа. В камере образуется вакуум, благодаря чему порошок из воронки засасывается в нее и смешивается с жидкостью. Обра­зовавшаяся пульпа поступает в бак и ударяется о специаль­ный башмак, в результате чего комки твердой фазы дополни­тельно измельчаются и перемешиваются с жидкостью. Под­нимаясь вверх, суспензия теряет скорость, из нее выпадают на дно комки глины или утяжелителя. Готовая суспензия сливается через выходную трубу в верхней части бака.

Гидравлические мешалки аналогичной конструкции, но без смесительного бака применяются для приготовления цементных растворов при цементировании скважин. В частности, они яв­ляются составной частью цементно-смесительных машин.

Глинистый раствор подается к емкости бурового насоса и затем поступает в бурильную колонну. Проходя через отвер­стия долота, промывочная жидкость захватывает частицы раз­рушенной породы и поднимает их на поверхность. Для очи­стки глинистого раствора от обломков выбуренной породы и абразивных частиц широко используют механические спосо­бы (вибрационные и конвейерные сита) и гравитационные (осаждение в амбарах и при малой скорости течения — в желобах); для удаления наиболее мелких частиц применяют гидроциклоны.

Рис. 2.13. Гидравлическая мешалка эжекторного типа ГДМ-1

Вибрационное сито СВ-2 состоит из двух вибрирующих рам, наклоненных под углом 12 — 18° к горизонту и смонтиро­ванных на одной общей неподвижной раме, распределитель­ного желоба и двух электродвигателей. Каждая вибрирующая рама имеет на концах два специальных барабана, на которые натягивается сетка, плотно прилегающая к промежуточным опо­рам. Сетка изготовляет­ся из проволоки (не­ржавеющая сталь) диа­метром 0,25 или 0,34 мм; на 1 см ее длины при­ходится соответственно 16 или 12 отверстий. На рамах установлены экс­центриковые валы, каж­дый из которых приво­дится во вращение от электродвигателя.

Вибрации сетки раз­рушают тиксотропную структуру раствора и та­ким образом уменьшают ее условную вязкость.

Процеживаясь через сетку и освободившись от обломков выбурен­ной породы, раствор направляется в сборное корыто, а оттуда через боковой лоток — в же­лоб циркуляционной системы или в емкость бурового насоса. Час­тицы выбуренной по­роды под действием вибраций сползают по наклонной поверхности сетки в отвал.

Эффективным очис­тным устройством гли­нистых растворов явля­ется гидроциклон. Гид­роциклон (рис. 2.14) со­стоит из вертикального цилиндра 1 с тангенциальным подводным патрубком 5, конуса 3, сливной трубы 2 и регулировочного устройства с насадкой 4. Промывочный раствор под избыточным давлением 0,2 — 0,3 МПа по тангенци­альному патрубку 5 поступает в цилиндр 1 и приобретает вращательное движение. Под действием центробежной силы более тяжелые частицы отбрасываются у периферии, а наи­более легкие концентрируются в центральных и средних уча­стках гидроциклона. При высокой скорости вращения потока в гидроциклоне вдоль оси образуется воздушный столб, дав­ление в котором ниже атмосферного. Осевая скорость на границе этого столба максимальна и направлена вверх, а на стенках гидроциклона осевая скорость направлена вниз.

Вследствие такого распределения осевых скоростей в гидро­циклоне возникает поверхность, проходящая через точки с ну­левой скоростью и отделяющая периферийную часть потока, в которой сконцентрированы наиболее тяжелые частицы твердой фазы и которая опускается по стенке гидроциклона вниз, от центральной, наиболее легкой части потока, движущейся вверх. Опускающиеся по спирали наиболее тяжелые частицы твердой фазы вместе с небольшим количеством жидкости удаляются через насадку 4 в отвал или отстойник. Основной же объем жидкости, содержащей наиболее легкие фракции твердой фазы, направляясь вверх вдоль воздушного столба, удаляется из гид­роциклона через сливную трубу 2. Диаметр насадки 4 регулиру­ют в зависимости от наибольшего размера частиц, которые должны быть удалены из промывочной жидкости.


Рис. 2.14. Гидроциклон

Наиболее быстро изнашивающиеся детали (внутреннюю поверхность вводного патрубка, насадку и внутреннюю обли­цовку конуса) изготовляют сменными из резины.

Гидроциклоны рекомендуется использовать для очистки про­мывочной жидкости от мелких фракций твердых частиц, ко­торые не могут быть удалены с помощью сит. В связи с этим промышленность изготовляет специальные ситогидрациклонные установки типа 4СГУ-2.

В состав такой установки входят вибрационное сито, батарея из четырех параллельно смонти­рованных гидроциклонов с наружным диаметром цилиндра 250 мм, шламового насоса и емкости.

Для разбуривания аргиллитов, сланцевых глин, соленос-ных пород с промывкой скважин жидкостью на водной основе под воздействием отфильтрованной из раствора воды, как правило, происходят осыпи, обвалы пород и растворе­ние соленосных пород. В этих условиях желательно исполь­зовать неводные промывочные жидкости. Такие жидкости следует применять и при бурении в продуктивных пластах, так как нельзя допускать загрязнение коллекторов отфильт­рованной водой [9].

Промывочные жидкости на неводной основе — сложная многокомпонентная система, в которой дисперсионной сре­дой являются жидкие нефтепродукты, чаще всего дизельное топливо. Поэтому их называют растворами на углеводород­ной основе (РУО).

Наиболее распространены известково-битумные растворы (ИБР), в состав которых входят дизельное топливо, битум, окись кальция, поверхностно-активное вещество и небольшое количе­ство воды. Для повышения плотности ИБР, если это необходи­мо, в раствор добавляют барит, имеющий большую плотность.

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19