Основой получения ормокеров является золь-гель процесс. Существует три пути синтеза ормокеров золь-гель реакцией. Классический подход включает формирование неорганической сетки гидролизом и конденсацией мономерного органического алкокси соединения с последующим сшиванием введенных реактивных групп, например УФ полимеризацией. Во втором методе органический полимер (например полианилин) формуется с силилированными мономерами для соединения этого компонента с неорганической основой с помощью золь-гель процесса. В третьем, органические полимеры типа поливинилбутираля или сополимера стирола и аллилового спирта модифицируются соответствующими органическими алкокси соединениями с последующей золь-гель реакцией.
Традиционный синтез ормокеров начинается с функционализации алкоксисиланов полимеризуемыми группами, далее алкоксисиланы гидролизуются и конденсируются, приводя к олигомерным Si-O-Si – нано структурам. Кроме алкоксисиланов, конденсироваться или соконденсироваться могут и другие алкоксиды металлов, такие как титан-, цирконий - или алюминий - алкоксиды. Эти олигомеры замещают традиционные метакриловые мономеры в композитах. Примером метакрилат-функционализированного алкоксисилана стоматологического назначения является продукт реакции (3-изоцианатопропил)-триэтоксисилан (IPTES) с диметакрилатом глицерина (рис. 26) или карбокси-функционализированный диметакриловый алкоксисилан, получаемый реакцией гидроксиэтилметакрилата с 3-(метилдиэтоксисилил)-пропилсукциновым ангидридом (рис. 27) [38].

Рисунок 26. Реакция IPTES с диметакрилатом глицерина.

Рисунок 27. Реакция гидроксиэтилметакрилата с 3-(метилдиэтоксисилил)-пропилсукциновым ангидридом.
Указанные конденсаты силанов более вязкие системы, чем Bis-GMA. Для снижения вязкости синтезировали новые сшиваемые силаны, используя (3-аминопропил)- триэтоксисилан (APTES) [61]. Метакрилат-функционализированный аминосилан с выходом 99% получали реакцией присоединения Михаэйля APTES к 2-акрилоилоксиэтил - метакрилату (рис.28). А взаимодействие APTES с продуктом присоединения сукцинового ангидрида к диметакрилату глицерина приводило к силану, в котором диметакрилатная группировка связывалась с конденсируемой группой через амидную группу (рис.29). Гидролитическая конденсация алкоксисиланов в присутствии фторида аммония приводит к линейным и разветвленным олигомерным аморфным Si-O-Si структурам.

Рисунок 28. Реакция присоединения Михаэйля APTES к 2-акрилоилоксиэтилметакрилату.
Специальные условия гидролиза и конденсации позволяют получить силсэсквиоксаны – олигомерные кольцевые и кубические Si-O-Si структуры. Силсэсквиоксаны или «Т-смолы» представляют класс соединений с общей эмпирической формулой RSiO1,5. Название происходит от полуторного соотношения кислородных связей к кремнию (sesqui - полтора). Альтернативное название «Т-смолы» является производным от трех (Т) замещенного кремния. Силсэсквиоксаны рисуют в виде трех структур: лестничной (А), кубической (В) и клеточной (С) (рис. 30).

Рисунок 29. Синтез диметакрилат-функционализированного 3-амидопропилсилана.

Рисунок 30. Три структуры силсэсквиоксанов: лестничная (А), кубическая (В) и клеточная (С).
Если заместитель R в структуре силсэсквиоксана является полимеризуемой или прививаемой группой, то образуется мономерный силсэсквиоксан. Синтез акриловых органо-силсэсквиоксанов осуществляли гидролизом и конденсацией (3-метакрилоилокси)- пропилтриметоксисилана с выходом более 90% [39, 62]. Полимеризуемые силсэсквиоксаны синтезировали также в две стадии [38]. В начале получали октагидридосилсэсквиоксан (HSiO1,5)8, который далее подвергали реакции гидросилилирования с пропаргил-метакрилатом. В итоге получали смесь изомерных ди - и гекса-метакрилатзамещенных кубов. Низковязкие жидко-кристаллические силсэсквиоксаны предложены в работе [63].
Другими подходами к получению органо-неорганических композитов являются: одновременная конденсация и полимеризация in-situ тэтра-алкоксисилана с полимеризуемыми алкоксидами, а также синтез органической полимерной матрицы и ее сшивка с неорганическим компонентом за счет конденсации [38].
Несмотря на некоторое уменьшение полимеризационной усадки, краевая адаптация ормокеровых композитов сопоставима с обычными композитами. Это обстоятельство послужило причиной объединения низко усадочных или расширяющихся систем с золь-гель процессом. Известным полиприсоединением «тиол-ен» синтезировали норборнен силаны с малым объемным сжатием, которые далее реагировали с пентаэритрит тэтра-(3-меркаптопропионатом). Получали полимер с объемным сжатием всего 0,5% [64], но относительно гибкий, снижающий прочность композита. Также были испытаны системы объединяющие силаны с циклическими мономерами, полимеризующимися с раскрытием кольца [65]. Они не избежали недостатков обычных циклических мономеров.
Доступные сегодня на рынке композитные пломбировочные материалы, основанные на технологии ормокеров, не являются чисто ормокерными системами. Для регулирования вязкости конденсата используются традиционные метакрилатные мономеры-разбавители, что не способствует улучшению биосовместимости. Не достигнуто и существенного улучшения механо-физических характеристик, например абразионная стойкость осталась на уровне традиционных композитов. Комбинирование с группами, полимеризуемыми с раскрытием кольца, приводит к ингибированию полимеризации влажной средой ротовой полости. Радикально раскрываемые кольца винилциклопропанов пока недостаточно реакционно-способны для объединения с золь-гель системами.
Аналоги и заместители Bis-GMA
В настоящее время большинство коммерческих стоматологических восстановительных материалов содержат мономер Bowen [4]. Причиной доминирования Bis-GMA является его относительно низкая полимеризационная усадка (около 6%), быстрое отверждение при свободно-радикальном инициировании и низкая летучесть. Полимеризаты Bis-GMA обладают хорошими механическими характеристиками. Однако, Bis-GMA имеет и ряд недостатков: высокая вязкость (1-1,2 кПа×с при 230С), чувствительность к воде, относительно низкая конверсия двойных связей при полимеризации, склонность полимеризатов к хрупкому излому и износу. Указанные недостатки стимулировали разработку аналогов и заместителей Bis-GMA.
Фторированные аналоги Bis-GMA
Фтор-углерод содержащие полимеры имеют низкую энергию поверхности, являются очень гидрофобными и устойчивыми к различным химическим веществам. Кроме того, стойкость к окрашиванию и прикреплению микробов, прекрасная биосовместимость делает фторированные полимеры привлекательными для стоматологического применения. Фторированные аналоги Bis-GMA синтезировали этокси - или пропоксилированием 4,4’-(гексафторизопропилиден)дифенола (гексафторбисфенола А) с последующим метакрилированием продуктов реакции метакрилоилхлоридом [66], реакцией диэпоксидов с фтор-спиртами и превращением полученных диолов в диметакрилаты. Мономеры с чередующимися фторированными ароматическими группами показали лучшие механические свойства, уменьшение усадки и сорбции воды, чем мономеры с растянутой перфторалкильной цепью [67-73]. Композиты на основе фторированных мономеров оказались очень гидрофобными, однако их механические характеристики были недостаточно высокими. В связи с этим фторированные аналоги Bis-GMA рекомендовано применять только как добавки к основным матричным мономерам для регулирования гидрофильно-гидрофобного баланса.
Заместители Bis-GMA
Учитывая недостатки Bis-GMA, связанные с его вязкостью, исследователи предпринимают попытки синтезировать заместители этого мономера. В качестве альтернативы Bis-GMA были синтезированы различные по строению уретанметакрилаты. Так доктор Moszner с соавторами получали новые уретанметакрилаты взаимодействием коммерчески доступного a, a,a’,a’-тэтраметил-мета-ксилилендиизоцианата (TMXDI) с гидроксилсодержащими мономерами: 2-гидроксиэтил- (рис. 31), 2-гидроксипропил-метакрилатами, диметакрилатом глицерина [74]. TMXDI объединяет преимущества свойств алифатических (низкая способность к обесцвечиванию) и ароматических (жесткость) диизоцианатов. Поэтому метакрилаты на основе TMXDI обладают достаточно близкими с Bis-GMA свойствами.

Рисунок 31. Заместитель Bis-GMA на базе уретан диметакрилата из TMXDI и НЕМА.
Другими примерами уретановых смол, заменяющих Bis-GMA, являются уретан-тэтраметакрилаты [75], карбомоилизоциануратные смолы, получаемые пошаговой реакцией триизоцианатоизоцианурата с мономерами, содержащими одну или более гидроксильную группу [38]. Трехфункциональный сшиватель (рис. 32) для композитов с низкой усадкой получали также реакцией трифенилолметантриглицидилового эфира с метакриловой кислотой в присутствии катализатора 4-(диметиламино)пиридина [76].

Рисунок 32. Трис[4-(2'-гидрокси-3'-метакрилоилоксипропокси)фенил]метан (TTEMA).
Многофункциональные олигомеры с большой молекулярной массой синтезировали этоксилированием или пропоксилированием поли(изопропилидендифенольной) смолы с последующей частичной этерефикацией метакрилоил хлоридом [77]. Серия диметакрилатов бисфенолов с жесткой и гидрофобной структурой была синтезирована на основе аддукта 3,3,5-триметилциклогексан-1-он и фенола с последующим взаимодействием с гидроксиэтилметакрилатом [78]. Пример одного из подобных диметакрилатов представлен на рис. 33.

Рисунок 33. Диметакрилат на основе аддукта 3,3,5-триметилциклогексан-1-он и фенола.
Реакцией глицидилметакрилата с фталевой, изо-фталевой и тере-фталевой кислотами синтезировали низковязкие дифункциональные сшиватели, заменяющие Bis-GMA [79] (рис. 34).
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 |



