Мономер

37

38

39

R1

C2H5

C2H5

Фенил

R2

C2H5

Фенил

Фенил

Температура стеклования полимера (Tg, 0C)

40

54

77

Рисунок 19. Структуры мономеров и температура стеклования полимеров 1,1-дизамещенных 2-винилциклопропанов [38].

Температура стеклования полимеров для стоматологического применения должна быть выше 600С. Однако, заместители, наряду с температурой стеклования, увеличивают и температуру плавления исходных мономеров. Менее вязкими мономерами, способными давать сшитые полимеры нерастворимые в органических растворителях, оказались структуры 40-44 (рис. 20). К тому же некоторые из них (41) показали расширение объема при полимеризации в массе, которое можно объяснить переходом плотной структуры кристаллического мономера в менее сжатую структуру аморфного полимера.

Рисунок 20. Сшиваемые 1,1-дизамещенные 2-винилциклопропаны 40-44 [38].

Сшиваемые винилциклопропаны оказались менее реакционноспособны, чем метакрилаты. Поэтому были синтезированы гибридные мономеры (структуры 45-47 на рис. 21), содержащие и винилциклопропильные и метакрилатные группы [48].

Рисунок 21. Сшиваемые гибридные 2-винилциклопропаны 45-47 [38].

Сшиваемые винилциклопропаны показали меньшую, чем метакрилаты, токсичность, были стабильны в присутствии влаги, наполнителей, кислотных и основных примесей. Однако их применение в стоматологических составах требует более тщательного изучения.

Резюмируя все вышесказанное можно сделать вывод, что циклические мономеры, полимеризующиеся с раскрытием кольца с низкой усадкой или расширением, до сих пор не получили практического применения в коммерческих пломбировочных материалах. Главная причина в том, что они не удовлетворяют основным требованиям, предъявляемым к композитным восстановительным материалам.

Жидкокристаллические, разветвленные и дендриновые мономеры

Жидкокристаллические мономеры

В дополнение к полимеризации циклических мономеров с раскрытием кольца другой основной концепцией достижения низко усадочной фотополимеризуемой системы является идея использования предварительно упорядоченных жидкокристаллических или разветвленных сшивателей. Благоприятными свойствами этих мономеров с «полотняной» молекулярной структурой являются относительно низкие вязкость и полимеризационная усадка предварительно упорядоченных мономеров, по сравнению с соответствующими линейными мономерами. Полимеризация жидкокристаллических диакрилатов происходит с высокой скоростью, приводя к высокой конверсии двойных связей и низкой объемной усадке. Примеры таких мономеров представлены на рис. 22 (структуры 48,49). Объемное сжатие при полимеризации мономера 48 составило 2,1%, для мономера 49 около 1,3% [38, 49].

Рисунок 22. Жидкокристаллические при температуре близкой к комнатной ди(мет)акрилаты 48 и 49 [38].

Проблемой применения жидкокристаллических мономеров является высокая температура плавления. Для ее решения синтезированы разветвленные бисметакрилаты (структуры 50 и 51 на рис. 23), которые являются жидкокристаллическими при комнатной температуре.

Рисунок 23. Разветвленные жидкокристаллические при комнатной температуре бисметакрилаты 50 и 51 [38].

Жидкокристаллические при комнатной температуре мономеры очень перспективны в качестве матричных мономеров для фотополимеризуемых композитов, благодаря их низкой полимеризационной усадке, относительно низкой вязкости и высокой конверсии двойных связей. Однако, другие компоненты композитов (сомономеры, наполнители и т. д.) могут отрицательно влиять на образование жидких кристаллов. Кроме того, синтез жидкокристаллических мономеров является дорогим, а образуемая полимерная сетка имеет тенденцию к повышенной гибкости, что может снижать механические свойства композитов.

Разветвленные и дендриновые мономеры

С целью упрощения синтеза были разработаны высоко разветвленные не жидко-кристаллические мономеры для применения в стоматологических композитах. Обычной реакцией Михаэйля при добавлении технического 3,(4),8,(9)-бис-(аминометил)-трициклодекана к 2-(акрилоилокси)этилметакрилату синтезировали разветвленный метакрилат (структура 52 на рис. 24) с молекулярной массой 931 г/моль и вязкостью около 150 мПа×с, полимеризационной усадкой 2,9%, что можно сопоставить с соответствующими характеристиками Bis-GMA (512 г/моль, 1000 мПа×с, 6%).

Рисунок 24. Разветвленный низковязкий тэтраметакрилат 52 [38].

К сожалению, механические свойства композитов на основе подобных мономеров оказались недостаточными. Поиск путей улучшения механических характеристик сверх разветвленных мономеров привел к синтезу дендритичных метакрилатов с количеством метакрилатных групп от 32 до 128 на молекулу [38, 50-53]. Несмотря на огромную молекулярную массу (до 30 000 и более) таких полифункциональных метакрилатов, они оставались жидкостями с относительно низкой вязкостью. Дендритичные сшивающие полифункциональные метакрилаты синтезировали присоединением Михаэйля аминофункциональных поли(пропиленимин)дендримеров (компании DSM, Нидерланды) к 2-(акрилоилокси)этилметакрилату.

Композиты с количеством наполнителя 80%, матрица которых состояла из 20% дендритичных метакрилатов, 40% Bis-GMA, 20% UDMA и 20% TEGDMA, представляли собой пасту напоминающую сухой материал. Однако, под давлением она приобретала текучую консистенцию и могла применяться аналогично амальгаме. Такое реологическое поведение объясняется тем, что дендритичные метакрилаты действуют как молекулярная губка для мономера разбавителя. При давлении или выдавливании дендримеры выделяют мономер [38, 54].

Недавно были синтезированы новые низковязкие и малоусадочные сверх разветвленные алифатические и ароматические полиэфиры, используя триметилолпропан и 2,2-бис-гидроксиметилпропионовую кислоту, либо на основе 2,2-бис-(4-гидроксифенил)- пивалоновой кислоты, которые далее этерифицировали смесью метакриловой и изо-маслянной кислот [55].

Таким образом, благодаря относительно низкой вязкости и отличному прониканию в образующуюся полимерную сетку, сверх разветвленные или дендритичные метакрилаты являются перспективными мономерами для получения низко усадочных композитов. Однако, для успешного применения в стоматологии, должны быть синтезированы новые мономеры такого типа, образующие полимерные сетки с улучшенными механическими характеристиками.

Компомеры

Компомеры являются одним из типов фотоотверждаемых стоматологических пломбировочных композитных материалов, также известных как композитные смолы, модифицированные поликислотами. Термин «компомер», предложенный компанией Dentsply [21], происходит от сочетания слов КОМПОзит и стекло-ионоМЕР и используется для описания безводных, однокомпонентных, светоотверждаемых композитов, содержащих кислотные метакриловые мономеры, армированные силанизированными наполнителями на основе кальций-, стронций - или барий-алюмофторсиликатных стекол, применяемых в стекло-иономерах. Компомеры были разработаны для улучшения физических свойств и клинического применения стекло-иономерных цементов. Один из первых компомеров Dyract содержал в качестве матричного мономера – продукт реакции двух молей 2-гидроксиэтилметакрилата с бутан 1,2,3,4-тэтракарбоновой кислотой, так называемый ТСВ мономер (см. табл.6) [20]. Общей характеристикой структуры предложенных мономеров для компомеров является то, что они содержат в молекуле как метакрилатные, так и кислотные группы [56-58] (см. табл.6 – ТСВ, BPDM, BTDM, STDM, OEMA, OPMA). Кроме этих диметакрилатов алфатических и ароматических тэтракарбоновых кислот, в качестве мономеров для компомеров использовались диметакрилаты циклоалифатических и гетероциклических тэтракарбоновых кислот (структуры 55 и 56 на рис. 25) и олигомерная поли(акриловая кислота), модифицированная глицидилметакрилатом [38, 58] (рис. 25).

Рисунок 25. Циклоалифатические и гетероциклические СООН-содержащие диметакрилаты для компомеров [38].


Рисунок 26. Синтез поли(акриловой кислоты), модифицированной глицидилметакрилатом.

Кислотные метакрилаты в компомерах могут одновременно свободно-радикально полимеризоваться по двойным связям и вступать в кислотно-основное взаимодействие с катионами, выделяемыми из частиц стеклонаполнителя в присутствии воды. В отсутствие воды ионного обмена не происходит. Поэтому отверждение компомеров происходит за счет свето-инициируемой полимеризации. Ограниченная кислотно-основная реакция происходит на поверхности, контактирующей с водой.

Все компомеры демонстрируют уменьшение прочности на сжатие и изгиб, вызываемое водо-инициируемым разложением на границе раздела матрица – наполнитель. Несмотря на то, что компомеры были разработаны с целью объединения лучших свойств композитов (высокие механические показатели, простота клинического применения, слабое влияние воды на полимер) и стекло-иономерных цементов (отсутствие полимеризационной усадки, высокая адгезия к зубной структуре, выделение фтора), их поведение более похоже на поведение композитных смол, чем на стекло-иономеры.

Ормокеры

Ормокеры представляют собой новый тип гибридных органо-неорганических стоматологических материалов. Их разработка преследовала цель уменьшить полимеризационную усадку, улучшить краевую адаптацию, абразионную стойкость и биосовместимость. Название ормокеров происходит от сочетания слов ОРганически МОдифицированная КЕРамика. Это трехмерно сшитые сополимеры на основе полимеризуемых мономеров, содержащих силоксановые группы. Разработчиком ормокеров и стоматологических материалов на их основе является Fraunhofer Silicate Research Institute (Wurzburg, Германия) [59, 60]. Термин «Ormocer» является регистрированной торговой маркой компании Fraunhofer Gesellschaft (FHG). Первым коммерческим стоматологическим материалом на основе ормокеров стал Definite®-OMC компании Degussa Dental (Германия).

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13