
Рисунок 34. Диметакрилаты на основе адукктов глицидилметакрилата с изомерными фталевыми кислотами.
Несмотря на многочисленные попытки замены Bis-GMA в стоматологических восстановительных материалах, большинство коммерческих продуктов по-прежнему основаны на этом универсальном связующем.
Рентгеноконтрастные мономеры
Согласно стандарту ISO 4049, пломбировочные материалы для задних зубов должны обладать определенной рентгеноконтрастностью для возможности определения дефектов с помощью рентгеноскопии. Главным образом рентгеноконтрастность в композитах достигается за счет абсорбции или отражения рентгеновских лучей наполнителями. Малонаполненные, например текучие, композиты не удовлетворяют этим требованиям. В данном случае рентгеноконтрастность достигается за счет полимерной матрицы. Рентгеноконтрастные полимерные материалы получают либо из мономеров, содержащих тяжелые металлы, либо, используя мономеры с йодными или бромными остатками. Последние являются наиболее общими источниками получения рентгеноконтрастных полимеров. Примерами галогенсодержащих мономеров могут служить: 2,4,6-трийодофенил - метакрилат, 2-метакрилоилоксиэтил-2,3,5-трийодобензоат (рис. 35) [38].

Рисунок 35. Галогенсодержащие метакрилаты: а. 2,4,6-трийодофенилметакрилат; b. 2-метакрилоилоксиэтил-2,3,5-трийодобензоат
Антикариозные мономеры
Антикариозными называют материалы, способные ингибировать рост кариозных бактерий. Большинство современных композитов имеют в своем составе фторсодержащие наполнители типа соединений трехфтористого иттербия. Однако это совсем не означает, что они способны выделять достаточное для предотвращения кариеса количество фтор-ионов. Поэтому и были предложены антибактериальные мономеры для стоматологических композитов. Доктор Imazato с соавторами сообщили о добавлении к стоматологическим смолам мономера метакрилоилоксидецилпиридиний бромида (MDPB) (рис. 36) [80, 81].

Рисунок 36. Антикариозный мономер метакрилоилоксидецилпиридиний бромид (MDPB).
Этот мономер имеет метакрилатную группу, способную сополимеризоваться с другими метакрилатами, и антибактериальную группу. Соединения, содержащие MDPB, имеют ингибирующий эффект на Streptococcus mutans и практически не влияют на свойства и отверждение композитов. К сожалению антимикробный эффект проявляется только при прямом поверхностном контакте с бактериями.
Другими направлениями введения антибактериальных агентов в полимерную матрицу композитов является использование мономеров содержащих серебро [82], цинк или фтористые соли [38, 39]. Последние представляют собой четвертичные аммониевые соли и могут более эффективно вступать в реакции ионного обмена в водной среде. В качестве примеров мономерных фтор-ион содержащих четвертичных аммониевых солей могут служить мономеры на основе диметиламиноэтил-, диэтиламиноэтил-, морфолиноэтил-метакрилатов и их (мет)акрилатные или (мет)акриламидные аналоги. Так компания Bisco Inc. в 1989 г заявила выделяющий фтор сополимер на основе гидрофторида морфолиноэтилметакрилата (MEM×HF) [83] (рис. 37).

Рисунок 37. Антикариозный мономер гидрофторид морфолиноэтилметакрилата (MEM×HF).
Мономерную соль получали взаимодействием морфолиноэтилметакрилата с 49%-ой плавиковой кислотой в этаноле при пониженной температуре. MEM×HF использовали либо добавлением в состав связующего композита, либо предварительно сополимеризовали с компонентами связующего в массе, дробили сополимер и вводили в композит в качестве со-наполнителя.
Общим недостатками антибактериальных композитов являются: локальное действие (на поверхностях соприкасаемых с водой), не способность выделения ионов «по требованию», сниженение прочностных свойств, низкая устойчивость к окрашиванию, низкая стабильность при хранении и недолговечность пломб. Антикариозные мономеры предпочтительнее вводить в составы компомеров, модифицированных смолами стекло-иономеров, грунтовок и адгезивов. Несмотря на указанные недостатки, данное направление исследований имеет большой потенциал.
Резюмируя раздел, посвященный модификации полимерной матрицы, можно сделать вывод, что попытки синтеза мономеров с улучшенной твердостью и механическими свойствами не привели к существенным результатам, так как увеличение твердости за счет уменьшения вязкости или введения сомономеров с более длинной цепью обычно сопровождается пластифицированием полимерной основы. Основной акцент исследований новых мономеров для композитов сосредоточен на уменьшении полимеризационной усадки и усадочного напряжения. Многообещающими являются исследования по синтезу и применению расширяющихся и жидкокристаллических мономеров. Коммерческие стоматологические композиты, основанные на смолах с минимальной полимеризационной усадкой, уже появились на рынке. Растет и число исследований по изучению биосовместимости и клинических характеристик новых мономеров.
Модификация наполнителей
Современные исследования по модификации наполнителей для стоматологических композитов включают: упрочнение композитов волокнами, введение пористых наполнителей и трехмерных структур, наполнителей с антикариозными свойствами, улучшение модификации силанами для увеличения стабильности, нанотехнологии и модификацию частиц для снижения внутренних напряжений. Основной акцент сосредоточен на разработке композитов с плотной консистенцией, которые можно использовать как «пакуемые» композиты для задних зубов подобно амальгаме. Продолжаются попытки разработки трещино - и износо - стойких композитов с альтернативными наполнителями. Доминирующими исследованиями и разработками в последние годы являются такие модификации наполнителей, как улучшенная технология размола для получения более мелких частиц и золь-гель процесс, приводящий к химически осажденным наполнителям. Использование химического осаждения является очень существенным изменением в производстве наполнителей, позволяющим получать гибриды оксидов кремния, титана, циркония, бария, наряду с органо-неорганическими гибридами. С помощью золь-гель процесса получают и пористые наполнители.
Типичные наполнители стоматологических композитов включают: аморфный кремнезем (микронаполнитель), кварц, бариевое стекло, стронциевое стекло, силикат циркония, силикат титана, оксиды и соли других тяжелых металлов, полимерные частицы.
Исследования показали, что композиты, содержащие стекло наполнители, в отличие от кварца или аморфной двуокиси кремния, выщелачивают большее количество ионов в результате растворения наполнителя. Растворение в значительной степени вызвано непрочной или непостоянной химической связью между наполнителем и полимерной матрицей. Традиционно связь на поверхности раздела наполнитель/полимер обеспечивается за счет модификации поверхности наполнителя алкоксисиланом, способным к сополимеризации с матричными мономерами. Наиболее применяемым модификатором является 3-метакрилоилоксипропокситриметоксисилан (мономер А-174). Для уменьшения водной сорбции предложены различные методики силанизации и новые силанизирующие агенты, типа поли(фтор)алкилтриметоксисиланов или 10-метакрилоилоксидецил-триметоксисилана [39]. Последний более гидрофобный мономер, чем А-174, благодаря большему числу углеродов в молекуле.
К настоящему времени проведено большое количество исследований по улучшению таких свойств композитных материалов, как абразивная устойчивость, реологические и механические характеристики. Улучшение свойств и технологичности применения композитов с помощью наполнителей идет как по пути модификации составов и типов наполнителей, так и по пути изменения степени и способов наполнения паст. Попытки упрочения композитов привели к созданию высоко наполненных (до 82%) «пакуемых» (конденсируемых) наполнителей. Для восстановления малых дефектов предложены композиты с низкой степенью наполнения 52-68%, получившие название «текучие». Для упрочения «текучих» композитов предпринимались попытки упорядочения частиц наполнителя в электрическом поле, введения волоконных пористых наполнителей и другие приемы, имеющие больше научный, чем клинический интерес.
Ниже приводится краткий обзор основных направлений исследований и разработок по модификации полимеризуемых стоматологических композитов, основанной на их наполнителях.
Биоактивные наполнители
Независимо от типа пломбировочного материала, наиболее частой причиной замены пломб является вторичный кариес. Одним из подходов к уменьшению рецидивного кариеса является введение в состав наполнителей компонентов, препятствующих деминерализации и обеспечивающих реминерализацию зубной структуры. Известными и широко применяемыми восстановителями зубной ткани, уменьшающими ее растворение кислотами генерируемыми кариозными бактериями, являются ионы фтора. Обычно для этой цели используются фторсодержащие барий алюмосиликатные стекла. В других случаях в состав традиционных наполнителей вводят соли фтора типа фторида стронция, натрия, иттербия, гексафтортитаната калия [38]. Выделение фтора сильно зависит от растворяющей среды. При низком значении рН (в кислой среде) выделяется большее количество фтора, чем в нейтральной. Общим недостатком фторсодержащих наполнителей является очень низкий уровень выделения фтор-ионов из малорастворимой сшитой полимером матрицы композита. Аналогичными недостатками обладают и другие наполнители, содержащие антибактериальные ионы серебра, цинка и т. д. Введение в состав наполнителей лекарственных веществ сталкивается с проблемой неравномерности их выделения.
Попытка моделирования природного механизма защиты от деминерализации привела к добавлению в состав наполнителя аморфного фосфата кальция (гидроксиаппатита). Несмотря на высокий процент реминерализации зубной ткани при использовании наполнителя из гидроксиаппатита, механические свойства композитов на его основе были слишком низкие для использования в качестве стоматологического пломбировочного материала.
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 |



