Камера сгорания предназначена для подвода к воздуху тепла, в результате в камере сгорания происходит значительный рост температуры (Т ). При этом профиль проточной части камеры сгорания выбран таким, чтобы по мере продвижения газа происходило некоторое увеличение его скорости (Ск < Сг) и снижение его давления (рк > рг). Термодинамический процесс в камере сгорания близок к изобарическому.
Турбина компрессора предназначена для привода во вращение ротора компрессора. Конструктивно выполнена как лопаточная машина, ротор которой с помощью вала связан с ротором компрессора и вращается заодно с ним. В турбине внутренняя энергия газа преобразуется в механическую т. е. Т¯, р¯ и за счет этого вырабатывается механическая энергия, передаваемая через вал к ротору компрессора и расходуемая на его вращение. В турбине реализуется политропический процесс с показателем политропы 1,47¸1,5.
Часть двигателя, включающая в себя компрессор, камеру сгорания, турбину компрессора, называется турбокомпрессором или газогенератором.
Свободная турбина предназначена для выработки мощности, необходимой для передачи к главному редуктору вертолета. Процессы, происходящие в свободной турбине аналогичны тем, которые происходят в турбине компрессора.
Выходное устройство двигателя (не регулируемое) представляет собой расширяющийся патрубок, обеспечивающий отвод отработанных газов в сторону от двигателя. В выходном устройстве двигателя ТВ2-117 газ, выходящий и свободной турбины активно смешивается с охлаждающим воздухом. В результате давление, температура и скорость газа снижаются.
Система приводов предназначена для передачи мощности от роторов двигателя к главному редуктору вертолета и агрегатам. К главному редуктору вертолета подводится вся мощность со свободных турбин обоих двигателей. К агрегатам систем двигателей мощность отбирается от ротора турбокомпрессора.
Маслосистема двигателя для смазки и охлаждения трущихся деталей двигателя, удаления продуктов износа. Маслосистема на двигателе ТВ2-117 выполнена циркуляционной. Основными агрегатами системы являются нагнетающие и откачивающие маслонасосы, фильтры, клапаны и др. Рабочей жидкостью маслосистем является синтетическое масло Б-ЗВ.

Рис. 21. Схема проточной части двигателя ТВ2-117 и изменение параметров воздуха (газа):
р— давление; c— скорость; Т— температура
Таблица 1.
Параметры газа в характерных сечениях двигателя ТВ2-117
|
Топливная система обеспечивает подачу топлива в камеру сгорания в соответствии с установленным режимом работы двигателя и условиями окружающей среды. Условно всю топливную систему можно разделить на четыре системы:
— систему низкого давления, обеспечивающую хранение необходимого запаса топлива на вертолете, очистку его от механических примесей и воды и подачу к насосу-регулятору, расположенному на двигателе. Обычно все элементы системы низкого давления расположены на вертолете;
— систему высокого давления, предназначенную для повышения давления топлива и подачи его в камеру сгорания. Агрегаты системы высокого давления обычно расположены на двигателе;
— пусковую топливную систему, обеспечивающую подачу пускового топлива при запуске двигателя;
— систему дренажа, обеспечивающую слив топлива из корпусов камеры сгорания и турбин двигателя после неудавшегося запуска, слив топлива из коллекторов рабочих форсунок после останова двигателя и капельный слив топлива и масла из уплотнений агрегатов, установленных на двигателе.
Система регулирования и управления включает в себя ряд агрегатов, обеспечивающих регулирование температуры газа перед турбиной и частоты вращения вала двигателя путем дозирования подачи топлива в камеру сгорания. Система регулирования управляет также и другими устройствами, обеспечивая устойчивую работу компрессора, исключая рост параметров рабочего процесса двигателя сверх допустимой величины.
Управление двигателями вертолета осуществляется при помощи ручки «шаг—газ», рукоятки коррекции газа и рычага раздельного управления. Перемещение ручки «шаг—газ» вызывает изменение угла установки несущего винта и перенастройку насоса-регулятора на другую подачу топлива. При этом частота вращения свободной турбины и несущего винта на основных рабочих режимах автоматически поддерживается постоянной. Рукояткой коррекции можно изменить режим работы двигателей, не изменяя угла установки лопастей несущего винта. Для опробования двигателей и в случае отказа одного из них предусмотрено их раздельное управление.
Противообледенительная система обеспечивает обогрев конструкции передней части двигателя и воздухозаборника горячим воздухом, отбираемым из компрессора.
Система запуска обеспечивает автоматический запуск двигателя и включает стартер-генератор, пусковую панель, аккумуляторные батареи (турбогенераторную установку), аэродромную розетку, переключающие контакторы и блокировочные реле. Запуск двигателя может осуществляться как от аэродромных источников питания, так и от бортовых аккумуляторных батарей.
3.3. Принцип работы ТВаД
Вертолетный газотурбинный двигатель представляет собой тепловую машину, в которой химическая энергия топлива превращается в тепловую энергию и затем тепловая энергия турбинами превращается в механическую работу. 2/3 этой работы затрачивается на привод компрессора и 1/3 часть—на привод несущего и рулевого винтов. Превращение тепловой энергии в механическую при работе двигателя осуществляется в результате процессов сжатия и расширения рабочего тела—воздуха, а затем газа при движении его по проточной части.
Графики изменения основных параметров газа приведены на рис. 21.
Первоначальная раскрутка ротора турбокомпрессора при запуске двигателя осуществляется электрическим стартер-генератором, работающим в стартерном режиме (электродвигателя), а воспламенение топливовоздушной смеси— электрическими запальными свечами. При вращении ротора воздух из атмосферы через воздухозаборник вертолета и воздушные каналы передней части двигателя всасывается компрессором. Скорость на входе в компрессор выбрана из условий уменьшения площади сечения входного устройства и диаметральных размеров компрессора при расчетном расходе воздуха и составляет примерно 150—160 м/с. Секундный расход воздуха на расчетном режиме работы двигателя определяется при газодинамическом расчете из условий получения требуемой мощности.
В компрессоре происходит сжатие воздуха до давления р*К, величина которого в несколько раз больше р*В. Сжатие воздуха происходит при преобразованием механической энергии вращения ротора компрессора, приводимого турбиной, в энергию давления. Повышение давления воздуха в компрессоре сопровождается ростом температуры. Скорость воздуха на выходе из компрессора изменяется до значения СК, значительно меньшего CВ. Это определяется необходимостью получения устойчивого процесса горения в камере сгорания и позволяет иметь сравнительно большую длину лопаток последней ступени осевого компрессора, что уменьшает перетекание воздуха по радиальным зазорам и повышает его коэффициент полезного действия.
Сжатый в компрессоре воздух поступает в камеру сгорания, где делится на две части. Часть воздуха (первичный поток) поступает в жаровые трубы и в этом потоке происходит сгорание топлива, подаваемого рабочими форсунками. Температура газа в зоне горения достигает 2500—2700 К. Другая часть воздуха (вторичный поток) проходит через отверстия и щели жаровых труб и, смешиваясь с горячими газами, снижает их температуру до допустимого значения (из условия жаростойкости турбинных лопаток). Давление в камере сгорания несколько снижается из-за гидравлических потерь и подогрева, а скорость увеличивается. Из камеры продукты сгорания поступают в турбину компрессора. При проходе газа по сужающимся каналам соплового аппарата скорость его увеличивается, а давление и температура уменьшаются. Сопловым аппаратом газ направляется на рабочие лопатки, где происходит преобразование кинетической энергии газового потока в механическую работу. Вращение от турбины компрессора передается на ротор компрессора и агрегаты, установленные на двигателе. Мощность, развиваемая турбиной компрессора на любом установившемся режиме, равна мощности, потребляемой компрессором и агрегатами двигателя. Мощность, развиваемая свободной турбиной, определяется величиной энергии газа, поступающего из турбины компрессора.
Увеличение частоты вращения ротора турбокомпрессора приводит к увеличению энергии газа поступающего в свободную турбину и соответственно к увеличению мощности, развиваемой этой турбиной.
Вращение от свободной турбины передается на несущий и рулевой винты, а также на агрегаты, получающие привод от вертолетного редуктора. Частота вращения свободной турбины (несущего винта) на рабочих режимах поддерживается постоянной специальными регуляторами путем изменения подачи топлива в камеру сгорания. Так, при самопроизвольном увеличении частоты вращения несущего винта регулятор уменьшает подачу топлива в камеру сгорания. Это приводит к уменьшению температуры газа перед турбиной компрессора Т*Г, уменьшению частоты вращения турбокомпрессора и уменьшению мощности, развиваемой свободной турбиной. При этом частота вращения свободной турбины и несущего винта восстанавливается до заданной. При самопроизвольном уменьшении частоты вращения несущего винта система регулирования работает в обратном порядке. Изменение режима работы производится изменением шага винта и одновременной перенастройкой системы регулирования на подачу топлива, соответствующую новому значению мощности двигателя. Рабочий газ, отдав свою энергию турбинам, выходит в выходное устройство двигателя. Выходное устройство обеспечивает перевод потока газа из кольцевого в сплошной и отвод его в атмосферу.
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 |



