В коррекционной школе учащиеся знакомятся с величинами (дли­ной, массой, стоимостью, временем, площадью, объемом), единицами измерения этих величин, их соотношением, числами, выражающими длину, стоимость, массу, время и т. д., и действиями с ними.

Наряду с этим учащиеся должны изучить дроби, как обыкно­венные, так и десятичные: получение дробей, основные свойства, преобразования, сравнение дробей, арифметические действия с дробями, проценты.

34

11а всех годах обучения решаются как простые, так и состав-И1.1Г арифметические задачи. Основную группу задач составляют, 1.Н1 называемые, собственно арифметические задачи) В программе уи.| 1аны и некоторые типовые задачи (на нахождение среднего / арифметического, на части, на прямое и обратное приведение к единице, на пропорциональное деление, на движение), имеющие большое практическое значение.

Известно, что математика изучает не только количественные отношения, но и пространственные формы. Программа по матема-тические для коррекционной школы включает: 1) изучение некоторых 11«<>метрических фигур и их свойств — линий, углов, круга, много­угольников, геометрических тел — параллелепипеда, куба, цилиндра, конуса, пирамиды, шара; 2) знакомство с квадратными и кубическими мерами, с измерением и вычислением площадей фигур и объемов геометрических тел (куба, параллелепипеда), а также решение задач геометрического содержания.

*В программе по математике предусматривается концентрическое изучение нумерации и арифметических действий с целыми числами. Изучение арифметического материала внутри каждого концентра происходит достаточно полно и законченно, причем материал предыдущего концентра углубляется в последующих концентрах.

При концентрическом расположении материала учащиеся по­степенно знакомятся с числами, действиями и их свойствами, доступными на данном этапе их пониманию. На первых порах ость возможность использовать предметную основу, так как изуча­ются небольшие числа. Затем осуществляется постепенный пере­ход к отвлеченным понятиям и оперирование с числами, которые трудно конкретизировать с помощью предметных совокупностей.

Приобретая новые знания в следующем концентре, учащиеся постоянно воспроизводят знания, полученные на более ранних сгапах обучения (в предыдущих концентрах), расширяют и углуб­ляют их. Неоднократное возвращение к одному и тому же поня­тию, включение его в новые связи и отношения позволяют умст-иенно отсталому школьнику овладеть им сознательно и прочно.

Рассмотрим задачи каждого концентра.

Задачей первого концентра является знакомство с числами первого десятка, цифрами для записи этих чисел, действиями сложения и вычитания; одновременно учащиеся знакомятся с еди­ницами измерения стоимости — копейкой, рублем, монетами до

стоинством в 1, 5, 10 копеек, 1 р., 5 р., 10 р. Изучение этого материала происходит в 0—1-х классах.

Задачей второго концентра является изучение нумерации и четырех арифметических действий в пределах 20'. Учащиеся зна­комятся с названием чисел 11—20 (перед ними раскрывается позиционный принцип записи чисел второго десятка; единицы за­писываются в числе на первом месте справа, десятки — на вто­ром), с новыми арифметическими действиями — умножением и делением. Учащиеся знакомятся с единицами измерения длины — сантиметром, дециметром, мерой емкости — литром, единицами измерения времени — неделей, сутками, часом, определением времени по часам, учатся измерять и чертить отрезки в сантимет­рах и дециметрах, работать с монетами.

Материал второго концентра изучается в 2—3-х классах.

Веретьем концентре изучается нумерация в пределах 100, раскрывается понятие разряда, учащиеся знакомятся со сложени­ем и вычитанием двузначных чисел, приемами устных и письмен­ных вычислений.

Завершается изучение табличного умножения и деления, озна­комление с внетабличным умножением и делением. Продолжается изучение величин и единиц их измерения.

Материал третьего концентра изучается в 3—4-х классах. Уча­щиеся получают понятия о единицах измерения длины (метре), стоимости (копейке, рубле), массы (килограмме), времени (годе, месяце), знакомятся с соотношением единиц измерения.

Задачей четвертого концентра является изучение нумера­ции в пределах тысячи, вычленение трех разрядных единиц (еди­ниц, десятков, сотен), составляющих основу нумерации много­значных чисел.

Продолжается изучение величин и единиц измерения длины (километр, миллиметр), массы (грамм, центнер, тонна), времени (секунда, год, месяц, сутки), соотношения единиц измерения, вы­работка практических умений, измерения величин. Изучение ма­териала четвертого концентра происходит в 5-м классе.

В общеобразовательной школе числа 11—20 не выделяются в отдельный концентр, а изучаются сразу числа от II до 100. В школе VIII вида необходимо выделять числа второго десятка в специальный концентр, так как на этих числах легче усвоить получение десятка, двузначных чисел, овладеть десятичным соста­вом этих чисел, познакомить с названием (числительными от 11 до 19 и 20), позиционным значением цифры в числе. На базе этих знаний проще перейти к изучению чисел 21—100.

36

Пятый концентр — многозначные числа (в I

В одних программах числа в пределах 1 миллиона иг сразу, а разбиваются на следующие отрезки числового ряда: в (| м классе изучаются числа до, в 7-м классе — до , в 8-м классе — до 1 В этих же пределах они ныполняют четыре арифметических действия с этими числами, в юм числе учатся вычислительным приемам умножения и деления и.| однозначное и двузначное число.

В других программах предлагается ознакомление учащихся сразу (в 6-м классе) с классом тысяч, т. е. с числами в пределах I Действия с многозначными числами вводятся посте­пенно, с учетом возрастающей степени сложности и особенностей успоения алгоритмов этих действий учащимися с интеллектуаль­ным недоразвитием.

Параллельно изучаются действия с числами, полученными при и шерении величин с 1—2 единицами измерения.

За период обучения математике в школе VIII вида должны овладеть следующим:

а) нумерацией чисел, счетом простыми и разрядными

ми, равными числовыми группами в пределах 1 , умением читать и записывать эти числа, знать их десятичный состав, раз­ряды и классы;

б) умением получить дробь, читать и записывать ее, знать виды
дробей, преобразовывать дроби;

в) арифметическими действиями, умением складывать и вычитать
устно в пределах 100, знать таблицу умножения и деления,

приемами письменных вычислений, выполнять четыре арифметических действия в пределах 1 умножать и де­лить на однозначное число), производить эти же действия с дроб­ными числами (кроме умножения и деления дроби на дробь), найти дробь и несколько процентов от числа;

г) умением решать простые и составные задачи в три действия,
указанных в программе видов;

д) иметь конкретные представления о единицах измерения стои­
мости, длины, емкости, массы, времени, площади и объема, знать
таблицу соотношения этих единиц, уметь пользоваться измери­
тельными инструментами и измерять длину масштабной линейкой,
, циркулем и рулеткой, взвешивать на чашечных и циферблатных

весах, определять емкость сосудов мерной кружкой, литровыми

37

или пол-литровыми емкостями (банками, бутылками), определять время по часам, уметь заменять число, выраженное в мерах длины, массы, времени и т. д., десятичной дробью и выполнять с ними четыре арифметических действия;

е) геометрическим материалом — уметь различать основные геометрические фигуры (точка; линии — прямые, кривые, лома­ные; отрезок; луч; угол; многоугольник — треугольник, четырех­угольник; круг; окружность; шар; конус; параллелепипед; куб), знать их названия, элементы, уметь чертить их с помощью линей­ки, чертежного треугольника, транспортира, циркуля, измерять и вычислять пл. ощади геометрических фигур и объемы параллелепи­педа и куба. "\

Вопросы и задания

1.Каковы принципы построения программы по математике в коррекцион-
ной школе?

2.  Назовите основные разделы математики, которые изучаются в коррек-
ционной школе, какими знаниями и умениями должны овладеть учащиеся
коррекционной школы за время обучения по каждому из разделов.

3.  Покажите на примере анализа содержания раздела «Нумерация» кон­
центричность расположения материала в программе.

Глава 5 МЕТОДЫ ОБУЧЕНИЯ МАТЕМАТИКЕ

Под методами обучения дидактике принято понимать способы совместной деятельности учителя и учащихся, при помощи которых учитель передает, а учащиеся усваивают знания, умения. В совре­менной дидактике особое значение придается методам, развивающим способности учащихся, формирующим их мировоззрение.

Выбор методов обучения обусловливается рядом факторов: за­дачами школы на современном этапе развития, учебным предме­том, содержанием изучаемого материала, возрастом и уровнем развития учащихся, а также уровнем готовности их к овладению учебным материалом. На выбор методов обучения оказывает вли­яние коррекционная направленность обучения в коррекционной школе, подготовка учащихся к овладению определенной профес­сией, а также решение задач социальной адаптации.

В данной главе дается краткая характеристика методов обуче­ния математике, общих для изучения всех разделов этого учебно­го предмета.

38

При ознакомлении учащихся с новыми знаниями используется метод рассказа. В методике математики этот метод принято называть методом изложения знаний. Наряду с этим методом юс1 широкое распространение получил метод беседы. В ходе беседы учитель ставит перед учащимися вопросы, ответы на которые предполагают использование уже имеющихся знаний. Опираясь. на имеющиеся знания, наблюдения, прошлый опыт, учитель постепенно ведет учащихся к новым знаниям. Закреплению новых пеший, формированию умений, совершенствованию знаний способствует метод самостоятельной работы. Нередко, используя •пот метод, учитель так организует деятельность учащихся, что новые теоретические знания ученики приобретают самостоятельно п могут применять их в аналогичной, а порой и новой ситуации. Таким образом, в зависимости от формы организации со-вместной деятельности учителя и учащихся выделяются сле­дующие методы обучения: изложение знаний, беседа, самостоя­тельная работа.

Методы обучения в дидактике классифицируются также в за-висимости от источника знаний. В соответствии с этой классифи­кацией выделяются словесные методы (рассказ или изложение зна­ний, беседа, работа по учебнику или другим печатным материалам), наглядные методы (наблюдение, демонстрация предметов или их изображений), практические методы (измерение, вычерчивание геометрических фигур, лепка, аппликация, моделирование, нахож­дение значений числовых выражений и т. д.).

В зависимости от способов организации учебной деятельности школьников (репродуктивная, продуктивная деятельность) выделя­ются такие методы: объяснительно-иллюстративный, при котором учитель дает учащимся готовую информацию, а они ее восприни­мают, осознают и запоминают; репродуктивный, при котором учи­тель дает образец выполнения задания, а затем требует от уча­щихся воспроизведения знаний, действий, заданий в соответствии с этим образцом; частично-поисковый метод, при котором учащие­ся частично участвуют в поиске путей решения поставленной задачи. При этом учитель расчленяет поставленную задачу на части, частично показывает учащимся пути решения задачи, а частично ученики самостоятельно решают задачу.

Исследовательский метод — это способ организации творчес­кой деятельности учащихся в решении новых для них проблем.

39

Широкое применение в школе находит проблемное изложение " знаний — это такое изложение, при котором учитель ставит проб­лему. Учащиеся, пытаясь ее разрешить, убеждаются в недостатке знаний. Эта проблема оказывается для них нередко неразреши­мой. Тогда учитель показывает путь ее решения.

В учебном процессе в школе чаще всего мы наблюдаем комби­нацию указанных методов. Комплексное их использование позво­ляет более полно решать задачи каждого урока.

В школе VIII вида наряду с традиционным иллюстративно-объ­яснительным методом обучения математике все шире внедряются продуктивные методы, особенно частично-поисковый метод, про­блемное изложение знаний.

В условиях обучения школьников с недоразвитием интеллекта любому учебному предмету прежде всего ставится задача воору­жить учащихся системой доступных им знаний, умений, необходи­мых для успешного овладения профессией, для быстрой адаптации в условиях современного производства, для активного участия в жизни.

Но достичь этого можно только при постоянной, целенаправ­ленной коррекционной работе по ослаблению или преодолению дефектов интеллектуального и эмоционально-волевого развития детей.

ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ МЕТОДОВ ОБУЧЕНИЯ НА УРОКАХ МАТЕМАТИКИ

В условиях школы VIII вида, учитывая дефекты познавательной деятельности учащихся, их эмоционально-волевой сферы, необхо-димо прежде всего развивать исполнительскую, воспроизводящую деятельность детеи^о только развитием этих видов деятельности учащихся нельзя ограничиваться, так как не будут в должной мере решаться задачи коррекции, подготовки к овладению профес­сией, социальной реабилитации и адаптации.

Развивая воспроизводящую деятельность учащихся, учитель ставит и решает более сложную задачу — развивает их инициа­тиву, творческую деятельность, учит использовать полученные знания сначала в аналогичных, а затем в новых условиях, для решения новых задач. Это возможно лишь при учете не только особенностей их познавательной деятельности, но и личностных качеств, их отношения к процессу познания, учению. 40

Прежде чем сообщить учащимся те или иные знания, необхо-инмо создать у них определенную положительную установку на щи приятие и осмысление этих знаний. Это достигается созданием, тропой или жизненно-практической ситуации, в которой ученики 1 >/ |ц'чувствовали бы недостаток знаний для решения определенной мш темной или учебной задачи, их заинтересовавшей. У учащихся присуждается чувство ожидания нового, неизвестного.

Например, прежде чем познакомить учащихся с вычислением площади прямоугольника, учитель спрашивает у них: «Удобно ли определять площадь прямоугольника путем наложения на него мер площади? Представьте себе, что нам нужно определить пло-щидь вашей мастерской, где стоят тяжелые станки, верстаки, доски и т. д. Чтобы измерить эту площадь наложением квадрат­ных метров, все надо вынести из мастерской. Это потребует много сил, времени. А не знаете ли вы, как еще можно определить площадь мастерской?» Учащиеся не могут дать ответ на этот •опрос. Они готовы слушать объяснение учителяСПри этом учи­тель, как правило, использует метод рассказа, или изложения знаний.

Рассказ — это последовательное логическое изложение мате­риала. Этот метод при обучении математике чаще всего применя­ется при ознакомлении с теоретическими знаниями (правилами, свойствами действий, порядком действий), вычислительными приемами.

При объяснении учитель связывает новый материал с пройден­ным, включая его в систему знаний, устанавливая связи и взаимо­зависимость между уже имеющимися у учащихся знаниями и приобретаемыми вновь. В установление этих взаимосвязей учи­тель вовлекает учащихся, воспроизводя имеющиеся знания, опи­раясь на их прошлый опыт. При этом он широко использует наглядность: предметные пособия, иллюстративные таблицы, ди­дактический раздаточный материал, схемы, чертежи, графики, арифметические записи чисел, действий, решений задач.

Изложение знаний, т. е. слово учителя, сочетается с наблюде­ниями учащихся^ В процессе изложения знаний учитель выделяет существенные признаки, варьируя несущественные, ведет учащих­ся, опираясь на чувственную основу, к выводам, правилам, обоб­щениям.

Объяснение нового материала в школе VIII вида не должно быть продолжительным, особенно в младших классах. Новый ма-

41

следует разбить на небольшие, логически завершенные «порции». На одном уроке излагается небольшой по объему мате­риал. Изложение учитель может иногда прерывать вопросом, об­ращенным к учащимся: «Как вы думаете, что нужно делать даль­ше?» или «Где нужно подписать десятки при сложении в стол­бик?» Вопросы ставятся для того, чтобы выяснить, понимают ли учащиеся излагаемый материал, успевают ли следить за изложе­нием или внимание их отвлечено. Они активизируют и познава­тельную деятельность учащихся, позволяют направлять их вни­мание.

Нередко объяснение учителя сопровождается демонстрацией наглядных пособий, практической работой учащихся с дидактичес­ким материалом. Практическая работа с предметами, направляе­мая объяснением учителя, может служить базой для обобщений. Например, учитель знакомит учащихся с названием и количест­вом элементов треугольника. Каждый ученик получает треуголь­ник. У всех учащихся они разного вида, размера, цвета. Модель треугольника демонстрируется и перед классом. Учитель объясня­ет, что треугольник имеет углы, показывает их. Учащимся предла­гается практическая работа — отыскать углы на моделях своих треугольников и посчитать их количество. Ученики должны сде­лать вывод: у лк>бого треугольника три угла. Учитель знакомит учащихся с названием и других элементов треугольника: вершина­ми, сторонами. Учащиеся отыскивают их на своих моделях, под­считывают количество и приходят к выводу, что сторон и вершин в треугольнике тоже по три. Они обводят, чертят треугольник, подписывают названия его элементов на моделях или чертежах.

Однако метод изложения знаний требует максимума активнос­ти от учителя, а не от учащихся. В коррекционной школе следует отдать предпочтение таким методам обучения, которые активизи­руют познавательную деятельность учащихся, включают их в по­иски путей решения поставленных вопросов. Этим требованиям отвечает использование метода беседы, особенно эвристической. / Беседой учитель пользуется"" тогда, "когда учащиеся имеют опре­деленный запас представлений для формирования на их основе новых знаний, понятий. Он готовит систему вопросов, с помощью которых не только воспроизводится усвоенный ранее учащимися материал, но организуются наблюдения учащихся. Учитель управ­ляет восприятием, помогает выделить главное, установить взаимо­отношения между изучаемыми фактами, свойствами объектов, яв-42

лений их обусловленностью и ведет учащихся к обобщениям, и, выбору действий при решении задач. Беседа активизирует учащихся будит мысль.

После беседы учитель должен дать учащимся образец ответа в связного рассказа. Например, после беседы и выводов о (естве элементов в прямоугольнике и свойствах его углов и..., ж учитель дает образец ответа детям: «Прямоугольник имеет I угла, 4 вершины, 4 стороны. Все углы у прямоугольника пря­мые1. Противоположные стороны равны».

Беседа как метод обучения широко используется при решении ч. Однако вопросы, которые ставятся перед учащимися, носят различный характер. Например, предлагается задача: «Для праздника купили 8 кг печенья на сумму 72 р. и 9 кг конфет на сумму 126 р. Во сколько раз дороже 1 кг конфет, чем 1 кг печенья?»

1-й вариант. Что купили для праздника? Сколько килограм­мов печенья купили? Сколько денег заплатили за 8 кг печенья? Что можно узнать, если известно, что куплено 8 кг печенья на сумму 72 р.? Сколько килограммов конфет купили? Сколько денег заплатили за 9 кг конфет? Что можно узнать, если известно, что за 9 кг конфет уплатили 126 р.? Мы узнали стоимость печенья и конфет. Можно ли узнать, во сколько раз дороже конфеты, чем

2-й вариант. Какой главный вопрос задачи? Что нужно знать, чтобы ответить на главный вопрос задачи? Можно ли из условия задачи узнать, сколько стоит 1 кг печенья? Можно ли узнать, сколько стоит 1 кг конфет? Когда будем знать, сколько стоит 1 кг печенья и 1 кг конфет, можно ли ответить на главный вопрос задачи?

3-й вариант. Что нужно знать для того, чтобы узнать, во сколько раз 1 кг конфет дороже, чем 1 кг печенья? Можно ли из условия задачи узнать стоимость 1 кг печенья и 1 кг конфет?

Форма вопросов 3-го варианта носит проблемный характер, требует от учащихся максимума активизации мыслительной дея­тельности для решения задачи. Постановка таких вопросов воз­можна только в том случае, если школьники имеют уже опыт задач, если в достаточной мере сформирован обобщен-способ их решения.

Но на определенном этапе обучения для многих учащихся щколы VIII вида решение задачи возможно лишь при использова­нии системы вопросов 1-го варианта.

43

Однако постепенно учитель должен вести учащихся от системы вопросов в 1-м варианте к системе вопросов в 3-м, развивая самостоятельность и активность учащихся.

Вопросы, которые ставит учитель в беседе, должны быть льно пппп\/маиит заранее. Необходимо соблюдать их

ь. Они должны быть сформулированы четко, э, доступны по содержанию, учитывать запас знаний и жиз-:й~ опыт учащихся. Недопустимы в условиях коррекционной : сдвоенные вопросы. Они не помогают учащимся усваивать знания, сосредоточиться, а наоборот, рассеивают их внимание. (Как образуется число 6 и из каких чисел оно состоит?)

Вопросы не должны заключать в себе ответа. (Все ли стороны в прямоугольнике равны или только противоположные?) Ответы на такие вопросы учащиеся дают наугад, не думая, не рассуждая. Следует избегать и неопределенных вопросов. (К каким фигу­рам относится квадрат?)

Организуя фронтальную работу с классом, следует учитывать индивидуальные возможности каждого ребенка. К ответу на более простые вопросы следует привлекать наиболее слабых учащихся.

При сообщении новых знаний, пользуясь методом изложения знаний или методом беседы, учитель широко использует наблюде­ния учащихся, дидактического материала, арифметических запи­сей и т. д.

В отдельных случаях на уроках математики сами наблюдения могут служить ведущим методом в сочетании с методом изложе­ния знаний или беседы. Используя метод наблюдения, учитель так организует познавательную деятельность учащихся, что им становится доступным самостоятельно сделать обобщения, выво­ды. Например, учащимся 4-го класса на основе наблюдений до­ступно сделать вывод об умножении числа на 10. Учитель записы­вает столбик примеров на умножение на 10 и просит решить их, заменив умножение сложением:

4-10=4+4+4+4+4+4+4+4+4+4=40 7-10=7+7+7+7+7+7+7+7+7+7=70 6-10=6+6+6+6+6+6+6+6+6+6=60

..................................................................=40

7-10=70 6-10=60

решения примера учитель просит сравнить множитель 4 и произведение 40. Какое число умножали? Какое число получили после умножения на 10? Какую цифру приписали справа к первому множителю? Аналогично сравниваются множитель и произведение ос­тальных числовых выражений. Учащиеся подводятся к выводу: «При умножении на 10 произведение можно получить из первого множи-44

мм, если к нему приписать один нуль справа». Обобщение уча-|рси сделали на основе наблюдения умножения однозначного ( ла на 10. Учитель подтверждает, что этот вывод ч умножения любого числа на 10.

Метод наблюдения в сочетании с предметно-практической ш. постью самих учащихся широко используется и при |(метрического материала. Например, при знакомстве со свойст-мнми углов и сторон прямоугольника (3-й класс) учитель исполь-яует такой способ: раздает каждому ученику по 2—3 модели этой фигуры разных размеров, просит измерить углы и стороны и запи-сить результаты измерений. Когда практическая работа закончена, он спрашивает, что ученики могут сказать об углах своих прямо­угольников. Ученики подмечают, что во всех прямоугольниках все углы прямые. Самостоятельно формулируют правило: «У прямо­угольника все углы прямые». Аналогично учащиеся подводятся к самостоятельному выводу о свойствах сторон прямоугольника.

Объектами наблюдений могут служить предметные совокупнос-п|, числа, арифметические записи, фигуры, таблицы, единицы из­мерения мер и др. Учитель направляет и организует наблюдения учащихся. Под его руководством учащиеся вычленяют, подчерки-и. нот тот существенный признак, который они должны распознать, упидеть. Можно выделить этот признак на наблюдаемом объекте цветом. Например, чтобы выделить поместное значение цифр в числе, единицы в числе записываются одним цветом, а десятки другим или подчеркиваются карандашами разного цвета и т. д.

Во всех видах заданий независимо от используемого метода надо стремиться к тому, чтобы учащиеся могли отличать сущест-не. нные признаки фигуры, действия, явления от несущественных. Л для этого требуется варьирование несущественных признаков в объектах для наблюдений, в заданиях, упражнениях и т. д. Это играет огромную коррегирующую роль, так как известно, что ум­ственно отсталые учащиеся с трудом дифференцируют существен­ные и несущественные стороны формируемого понятия. Только многократные наблюдения, задания учителя, направляющие вни­мание школьников на то, что при изменении несущественных признаков существенные остаются неизменными, помогают уча­щимся сформировать понятия.

При ознакомлении с новым материалом в условиях школы VIII вида, особенно в старших классах, используется метод рабо­ты с учебником, ч

Однако надо помнить, что этот метод «добывания» новых зна­ний может быть использован не всеми учащимися. Для первона-

45

I

чального ознакомления с новой темой учащимся, которые могут самостоятельно разобраться в тексте учебника, предлагается тща­тельно отобранный учителем необходимый материал. Чтобы усво­ить ту же тему, более слабые учащиеся слушают объяснение учителя или более сильного ученика, источником знания для ко­торых служил учебник.

Предъявлять учащимся учебник целесообразнее всего при оз­накомлении с новым случаем выполнения арифметического дейст­вия, который является более сложным по сравнению с ранее изученным. Например, после изучения сложения многозначных чисел с переходом через разряд в одном разряде учащимся можно предоставить возможность разобраться по учебнику в рассмотре­нии случаев сложения с переходом через разряд в двух (или даже трех) разрядах. Учащиеся должны показать, какой существенный признак отличает эти вычисления от рассматривавшихся ранее.

Естественно, что этот метод можно применять лишь тогда, когда в учебнике материал изложен достаточно подробно, с пра­вильно подобранными примерами-образцами.

' Метод работы с учебником тесно связан с методом самостоя­тельной работы.

Вопрос об использовании метода самостоятельной работы как. источника знаний в условиях коррекционной школы являлся дол­гое время дискуссионным. Бытовало мнение, что умственно отста­лые учащиеся не могут самостоятельно «добывать» знания. Одна-""' ко опыт работы лучших учителей коррекционной школы показыва­ет, что некоторые учащиеся в определенных условиях могут само­стоятельно разобраться в новом материале.

Если учитель расчленяет материал на небольшие порции, то усвоение какой-то промежуточной порции возможно и при само­стоятельной работе умственно отсталых школьников. Например, в 6-м классе после знакомства со сложением смешанного числа с дробью можно дать учащимся разобрать самостоятельно сложение смешанного числа со смешанным (1^ + 2^). Но следует иметь в виду, что некоторым учащимся будет необходим образец для выполнения действия (1 ~- + 2 о - = 3—~— = 3-у ). Разобравшись в ре­шении такого примера самостоятельно, они, осмыслив его, смогут перенести свои знания на решение аналогичных примеров. Дру­гим учащимся доступно выполнение действий без образца — 46

и состоянии использовать свой прошлый опыт и имеющиеся ми.

!|юцесс формирования знаний не ограничивается их сообщени-

мащимся. Знания необходимо закрепить, раскрыть их новые

•оны, привести в систему, научить учащихся использовать их

решения практических задач, формировать практические уме-

/ Достижению этих целей служит использование целого ряда чсюдов, в том числе и некоторых из тех, которые применялись ||>и сообщении новых знаний (метод беседы, метод самостоятель­ных работ, метод работы с учебником).

Метод беседы чаще всего используется для закрепления теоре-шчсских знаний (свойства геометрических фигур, правил, законов фифметических действий и т. д.). Метод самостоятельных и практических работ используется для закрепления умений и навы-кои. Самостоятельная работа в процессе закрепления математи­ческих знаний может быть организована по-разному.

В одних случаях она требует от учащихся использования лишь репродуктивной (воспроизводящей) деятельности. Например, при шкреплении и повторении табличных случаев сложения и вычита­ния в пределах 10 и 20, таблицы умножения и деления, системы соотношения единиц мер и др.

В других — в самостоятельную работу входят задания, упраж­нения, активизирующие мысль, связанные с применением знаний и сходной ситуации (нахождение значения числового выражения, аналогичного тому, на котором происходило знакомство с выпол­нением действия, решение аналогичных задач и др.).

Наконец, в самостоятельной работе от учащихся может потре­боваться использование продуктивной творческой деятельности (применение знаний в новой ситуации, решение новых задач).

Закрепление и повторение математических знаний невозможны без упражнений.

Упражнения используются для формирования навыков счета, вычислительных умений и навыков, умений решать задачи и т' д.

Упражнения должны использоваться в определенной системе, с нарастающей степенью трудности. Например, при закреплении таблицы умножения числа 3 сначала даются примеры в одно действие (3x2, 3x4) и примеры на замену сложения одинаковых слагаемых умножением, решаются примеры с «форточками» вида 3x111=12, а затем действие умножения включается в решение сложных примеров вида 3x8—20 и т. д.

47

Система упражнений должна быть подобрана так, чтобы новые знания связывались с уже имеющимися, способствовали их рас­ширению и углублению. Например, подбирая упражнения на за­крепление действий с десятичными дробями, учитель включает и действия над целыми числами, составляет сложные примеры с целыми и дробными числами (3,75+75+0,25+25), подчеркивает общность приемов выполнения действий над этими числами и общность законов (в данном случае переместительного и сочета­тельного).

Степень трудности должна определяться не только сложностью задания, но и индивидуальными возможностями учащихся.

Количество и разнообразие упражнений должно также опреде­ляться индивидуально для каждого ребенка, но быть достаточно большим. Это необходимо для формирования у учащихся прочных навыков. Упражнения должны быть посильны учащимся. Именно во время самостоятельной работы можно успешно реализовать принцип дифференцированного подхода — учащиеся получают ва­рианты заданий с учетом их способностей, потенциальных воз­можностей, темпа работы и т. д.

Учитель найдет в учебнике задания разной степени трудности и поэтому сможет дифференцированно подойти к учащимся при организации их самостоятельной работы в зависимости от воз­можностей и состояния их знаний по математике.

Дифференциации знаний учащихся способствуют упражнения на сопоставление или противопоставление сходных и контрастных понятий, действий. Поэтому в упражнениях полезны задания та­кого содержания (вычислить и сравнить решение):

9-2=

9-7:

2x4= 4x2=

3x4= 4x3=

12:4= 12:3=

7+2= 2+7=

Первые упражнения на закрепление того или иного действия, приема, решения задачи выполняются под руководством учителя. В дальнейшем упражнения выполняются самостоятельно, с после­дующим контролем, который выполняет сам ученик, проверяя вы­полнение действия обратным или тем же действием, проверяя задачи и др. Таким образом, в процессе выполнения упражнений формируются навыки самоконтроля, имеющие жизненно-практи­ческое значение.

Упражнения должны развивать инициативу, творчество уча­щихся. С этой целью подбираются такие упражнения, которые 48

I

робуют от учащихся выбора наиболее рационального пути реше­нии, выполнения того или иного действия. Например, решая при-н-р вида 250+126+34+350, учащиеся должны использовать нореместительное и сочетательное свойства сложения, а решая пример вида 199+75 — прием округления. Кроме того, они долж­ны самостоятельно составить пример или задачу данного вида.

Упражнения должны быть тесно связаны с жизнью, с практи­ческой деятельностью учащихся в мастерских. Например, закреп-•|ця знания по нумерации, учитель для анализа приводит примеры чисел, обогащающих знания учащихся об окружающей их дейст­вительности (численность населения крупных городов, протяжен­ность границ, площади морей и т. д.).

Самостоятельная работа в классе — это подготовка и к выпол­нению домашнего задания. Успешность ее выполнения является, как правило, показателем того, насколько учащиеся подготовлены | самостоятельному выполнению домашних заданий.

Практические работы — это, как правило, ручная деятель­ность учащихся с раздаточным дидактическим материалом, изме­рения, лепка, аппликация, рисование, конструирование. Практи­ческие работы находят широкое применение при закреплении уме­ний и формировании навыков измерений различными инструмен­тами, черчении, конструировании и т. д.

Практические работы требуют от учителя тщательного руко­водства, большой работы по предупреждению возможных ошибок или выработки неправильного навыка. Практическая работа долж­на обеспечить максимум самостоятельности, инициативы, умения проконтролировать свою практическую деятельность. Полезно ор­ганизовать взаимопроверку, контрольные измерения и т. д.

В специальной школе VIII вида на уроках математики широкое применение находят дидактические игры.

Известно, что если ребенок заинтересован работой, положи­тельно эмоционально настроен, то эффективность занятий заметно возрастает. Выработка любых умений и навыков у умственно от­сталых школьников требует не только больших усилий, длитель­ного времени, но и однотипных упражнений. Дидактические игры позволяют однообразный материал сделать интересным для уча­щихся, придать ему занимательную форму. Положительные эмо­ции, возникающие во время игры, активизируют деятельность ре­бенка, развивают его произвольное внимание, память. В игре ре-

49

бенок незаметно для себя выполняет большое число арифметиче» ких действий, тренируется в счете, решает задачи, обогащает свои пространственные, количественные и временные представле­ния, выполняет анализ и сравнение чисел, геометрических фигур. Дидактические игры, созданные специально в обучающих целях, способствуют и общему развитию ребенка, расширению его круго­зора, обогащению словаря, развитию речи, учат использовать ма­тематические знания в измененных условиях, в новой ситуации. Все это свидетельствует о большом коррегирующем значении ди­дактических игр.

На уроках математики в школе VIII вида дидактические игры находят широкое применение при закреплении любой темы. Со­здано большое количество игр, развивающих количественные, пространственные, временные представления и представления о размерах предметов. Хорошо известны игры «Веселый счет», «Живые цифры», «Арифметическое лото» (домино), «Круговые примеры», «Лесенка», «Молчанка», «Магазин» и др.1.

Поиски путей повышения эффективности учебного процесса привели к использованию элементов программированного обуче­ния.

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24