(1)

Если т — целое четное, то интенсивность будет максимальной; если т — целое нечетное, то интенсивность минимальна. При дроб­ном т происходит или частичное усиление (если т ближе к четному числу), или частичное ослабление (если т ближе к нечетному чис­лу).

1. Оптическая разность хода Δ1 будет складываться из геометри­ческой разности l2l1 (оба луча идут в воздухе) и дополнительной разности хода λ/2, обусловленной изменением фазы колебаний на π при отражении от среды оптически более плотной. Таким образом,

Δ1=l2—l1+ λ/2. (2)

Так как l2= (рис. 30.3), то

l2—l1=.

Величина H/l1<<1, поэтому для вычисления корня можно вос­пользоваться приближенной формулой (см. табл. 3)

при а<<1. Применив ее, получим

.

Подставив полученное выражение l2—l1 в формулу (2), найдем

. Зная Δ1, по формуле (1) найдем m1:

.

Так как Н=2h, то окончательно получим

.

После вычисления найдем

m1=33.

Так как на разности хода укладывается нечетное число длин полуволн, то в точке А наблюдается минимум интенсивности.

2. Стеклянная пластина толщиной d, поставленная на пути луча S1A (рис. 30.3), изменит оптическую длину пути. Теперь оптическая длина пути L будет складываться из геометрической длины пути l1—d и оптической длины пути nd луча в самой пластине, т. е.

L= (l1—d)+nd==l1+ (n—1)d.

Оптическая разность хода лучей

Δ2=l2—L+λ/2=l2—[l1 + (n—l)d]+λ/2, или

Δ2= Δ1—(n—1)d.

Пользуясь формулой (1), найдем

.

Произведя вычисления, получим m2=19,8.

Число длин полуволн оказалось дробным. Так как 19,8 ближе к целому четному числу 20, чем к целому нечетному числу 19, то в точке А будет частичное усиле­ние.

Пример 2. На толстую стек­лянную пластинку, покрытую очень тонкой пленкой, показа­тель преломления n2 вещества которой равен 1,4, падает нор­мально параллельный пучок монохроматического света (λ=0,6 мкм). Отраженный свет максимально ослаблен вследст­вие интерференции. Определить толщину d пленки.

Решение. Из световой волны, падающей на пленку, выделим узкий пучок SA. Ход этого пучка в случае, когда угол падения ε1 0, показан на рис. 30.4. В точках A и В падающий пучок частич­но отражается и частично преломляется. Отраженные пучки света AS1 и BCS1 падают на собирающую линзу L, пересекаются в ее фокусе F и интерферируют между собой.

Так как показатель преломления воздуха (n1= 1,00029) меньше показателя преломления вещества пленки (n2=1,4), который, в свою очередь, меньше показателя преломления стекла (n3=1,5), то в обоих случаях отражение происходит от среды оптически более плотной, чем та среда, в которой идет падающая волна. Поэтому фаза колебания пучка света AS1 при отражении в точке A изменя­ется на π рад и точно так же на π рад изменяется фаза колебаний пучка света BCS2 при отражении в точке В. Следовательно, резуль­тат интерференции этих пучков света при пересечении в фокусе F линзы будет такой же, как если бы никакого изменения фазы коле­баний ни у того, ни у другого пучка не было.

Как известно, условие максимального ослабления света при интерференции в тонких пленках состоит в том, что оптическая раз­ность хода Δ интерферирующих волн должна быть равна нечетному числу полуволн; Δ=(2k+1)(λ/2).

Как видно из рис. 30.4, оптическая разность хода

Δ=l2n2— l1n1=(|АВ| +|ВС|) п2—|AD| n1.

Следовательно, условие минимума интенсивность света примет вид

(|АВ| +|ВС|) п2—|AD| n1=(2k+1)(λ/2).

Если угол падения ε1 будет уменьшаться, стремясь к нулю, то AD 0 и (|АВ|+|ВС|2d, где d—толщина пленки. В пределе при ε1=0 будем иметь

Δ=2dn2=(2k+1)(λ /2),

откуда искомая толщина пленки

.

Полагая k=0,1,2,3,…, получим ряд возможных значений толщины пленки:

и т. д.

Пример 3. На стеклянный клин нормально к его грани падает монохроматический свет с длиной волны λ=0,6 мкм. В возникшей при этом интерференционной картине на отрезке длиной l=1 см наблюдается 10 полос. Определить преломляющий угол θ клина.

Решение. Параллельный пучок света, падая нормально к грани клина, отражается как от верхней, так и от нижней грани. Эти пучки когерентны, и поэтому наблюдается устойчивая картина интерференции. Так как интерференционные полосы наблюдаются при малых углах клина, то отраженные пучки света 1 и 2 (рис. 30.5) будут практически параллельны.

Темные полосы видны на тех участках клина, для которых раз­ность хода кратна нечетному числу половины длины волны;

Δ=(2k+1) (λ/2), где k=0,1,2,…. (1)

Разность хода Δ двух волн складывается из разности оптических длин путей этих волн (2dn cosε2’) и половины длины волны (λ/2).

Величина λ/2 представляет собой добавочную разность хода, воз­никающую при отражении волны от оптически более плотной среды. Подставляя в формулу (1) значение разности хода Δ, получим

2dkn cos ε2’ + λ/2 = (2k + 1) (λ/2), (2)

где п — коэффициент преломления стекла (n=l,5); dk—толщина клина в том месте, где наблюдается темная полоса, соответствую­щая номеру k; ε2’—угол преломления.

Согласно условию, угол падения равен нулю, следовательно, и угол преломления ε2’ равен нулю, a cos ε2’=1. Раскрыв скобки в правой части равенства (2), после упрощения получим

2dkn=kλ (3)

Пусть произвольной темной полосе номера k соответствует опре­деленная толщина клина в этом месте dk а темной полосе номера k+10 соответствует толщина клина dk+10. Согласно условию за­дачи, 10 полос укладываются на отрезке длиной l=1 см. Тогда ис­комый угол (рис. 30.5) будет равен

θ=(dk+10 – dk)/l, (4)

где из-за малости преломляющего угла sin θ=θ (угол θ выражен в радианах).

Вычислив dk и dk+10 из формулы (3), подставив их в формулу (4) и произведя преобразования, найдем

θ=5λ/(nl).

После вычисления получим

θ=2*10-4paд.

Выразим θ в градусах. Для этого воспользуемся соотношением между радианом и секундой (см. табл. 6); 1 рад=2,06"*105, т. е.

θ=2*10-4*2,06''*105=41,2'',

или в соответствии с общим правилом перевода из радиан в градусы

θград =θрад, θ=.

Искомый угол равен 41,2".

Задачи

Интерференция волн от двух когерентных источников

30.1. Сколько длин волн монохроматического света с частотой колебаний υ=5*1014 Гц уложится на пути длиной l=1,2 мм: 1) в вакууме; 2) в стекле?

30.2. Определить длину l1 отрезка, на котором укладывается столько же длин волн в вакууме, сколько их укладывается на отрез­ке l2=3 мм в воде.

30.3. Какой длины l1 путь пройдет фронт волны монохромати­ческого света в вакууме за то же время, за какое он проходит путь длиной l2=1 м в воде?

30.4. На пути световой волны, идущей в воздухе, поставили стек­лянную пластинку толщиной h=1 мм. На сколько изменится оп­тическая длина пути, если волна падает на пластинку: 1) нормаль­но; 2) под углом ε=30°?

30.5. На пути монохроматического света с длиной волны λ=0,6 мкм находится плоскопараллельная стеклянная пластина толщиной d=0,l мм. Свет падает на пластину нормально. На какой угол φ следует повернуть пластину, чтобы оптическая длина пути L изменилась на λ/2?

30.6. Два параллельных пучка све­товых волн I и II падают на стек­лянную призму с преломляющим уг­лом θ=30° и после преломления вы­ходят из нее (рис. 30.6). Найти оптическую разность хода Δ световых волн после преломления их призмой.

30.7. Оптическая разность хода Δ двух интерферирующих волн монохроматического света равна 0,3λ. Определить разность фаз Δφ.

30.8. Найти все длины волн видимого света (от 0,76 до 0,38 мкм), которые будут: 1) максимально усилены; 2) максимально ослаблены при оптической разности хода Δ интерферирующих волн, равной 1,8 мкм.

30.9. Расстояние d между двумя когерентными источниками све­та (λ=0,5 мкм) равно 0,1 мм. Расстояние b между интерференцион­ными полосами на экране в средней части интерференционной кар­тины равно 1 см. Определить расстояние l от источников до экрана.

30,10. Расстояние d между двумя щелями в опыте Юнга равно 1мм, расстояние l от щелей до экрана равно 3 м. Определить длину

волны λ, испускаемой источником монохроматического света, если ширина b полос интерференции на экране равна 1,5 мм.

30.11. В опыте Юнга расстояние d между щелями равно 0,8 мм. На каком расстоянии l от щелей следует расположить экран, что­бы ширина b интерференционной полосы оказалась равной 2 мм?

30.12. В опыте с зеркалами Френеля расстояние d между мнимыми изображениями источ­ника света равно 0,5 мм, рас­стояние l от них до экрана рав­но 3 м. Длина волны λ=0,6 мкм. Определить ширину b полос ин­терференции на экране.

30.13. Источник S света (λ=0,6 мкм) и плоское зеркало М расположены, как показано на рис. 30.7 (зеркало Ллойда). Что будет наблюдаться в точке Р экрана, где сходятся лучи SP и SMP,— свет или темнота, если |SP|=r=2 м, a=0,55 мм, |SM|=|MP|?

Интерференция света в тонких пленках

30.14. При некотором расположении зеркала Ллойда ширина b интерференционной полосы на экране оказалась равной 1 мм. После того как зеркало сместили параллельно самому себе на рас­стояние Δd=0,3 мм, ширина интерференционной полосы измени­лась. В каком направлении и на ка­кое расстояние Δl следует перемес­тить экран, чтобы ширина интерфе­ренционной полосы осталась преж­ней? Длина волны λ монохромати­ческого света равна 0,6 мкм.

30.15. Плоскопараллельная стек­лянная пластинка толщиной d=1,2 мкм и показателем преломления n=1,5 помещена между двумя среда­ми с показателями преломления n1 и n2 (рис. 30.8). Свет с длиной волны λ=0,6 мкм падает нормально на пла­стинку. Определить оптическую раз­ность хода Δ волн 1 и 2, отраженных от верхней и нижней поверхностей пластинки, и указать, усиление или ослабление интенсивности света происходит при интерферен­ции в следующих случаях: 1) n1<.п<n2; 2) n1>n>n2; 3) п1<п>п2; 4) n1>n<n2.

30.16. На мыльную пленку (n=1,3), находящуюся в воздухе, падает нормально пучок лучей белого света. При какой наименьшей толщине d пленки отраженный свет с длиной волны λ=0,55 мкм ока­жется максимально усиленным в результате интерференции?

30.17. Пучок монохроматических (λ=0,6 мкм) световых волн падает под углом ε1=30° на находящуюся в воздухе мыльную плен­ку (n=1,3). При какой наименьшей толщине d пленки отраженные световые волны будут максимально ослаблены интерференцией? максимально усилены?

30.18. На тонкий стеклянный клин (n=1,55) падает нормально монохроматический свет. Двугранный угол α между поверхностя­ми клина равен 2'. Определить длину световой волны λ, если рас­стояние b между смежными интерференционными максимумами в отраженном свете равно 0,3 мм.

30.19. Поверхности стеклянного клина образуют между собой угол θ=0,2'. На клин нормально к его поверхности падает пучок лучей монохроматического света с длиной волны λ=0,55 мкм. Оп­ределить ширину b интерференционной полосы.

30.20. На тонкий стеклянный клин в направлении нормали к его поверхности падает монохроматический свет (λ=600 нм). Оп­ределить угол θ между поверхностями клина, если расстояние b между смежными интерференционными минимумами в отраженном свете равно 4 мм.

30.21. Между двумя плоскопараллельными стеклянными плас­тинками положили очень тонкую проволочку, расположенную параллельно линии соприкосновения пластинок и находящуюся на расстоянии l=75 мм от нее. В отраженном свете (λ=0,5 мкм) на верхней пластинке видны интерференционные полосы. Определить диаметр d поперечного сечения проволочки, если на протяжении а=30 мм насчитывается m=16 светлых полос.

30.22. Две плоскопараллельные стеклянные пластинки прило­жены одна к другой так, что между ними образовался воздушный клин с углом θ, равным 30". На одну из пластинок падает нормально монохроматический свет (λ=0,6 мкм). На каких расстояниях l1 и l2 от линии соприкосновения пластинок будут наблюдаться в отражен­ном свете первая и вторая светлые полосы (интерференционные мак­симумы)?

30.23. Две плоскопараллельные стеклянные пластинки образуют клин с углом θ=30'. Пространство между пластинками заполнено глицерином. На клин нормально к его поверхности падает пучок монохроматического света с длиной волны λ=500 нм. В отражен­ном свете наблюдается интерференционная картина. Какое число N темных интерференционных полос приходится на 1 см длины клина?

30.24. Расстояние Δr2,1 между вторым и первым темным кольца­ми Ньютона в отраженном свете равно 1 мм. Определить расстоя­ние Δr10,9 между десятым и девятым кольцами.

30.25. Плосковыпуклая линза выпуклой стороной лежит на стеклянной пластинке. Определить толщину d слоя воздуха там, где в отраженном свете (λ=0,6 мкм) видно первое светлое кольцо Ньютона.

30.26. Диаметр d2 второго светлого кольца Ньютона при наблю­дении в отраженном свете (λ=0,6 мкм) равен 1,2 мм. Определить оптическую силу D плосковыпуклой линзы, взятой для опыта.

30.27. Плосковыпуклая линза с оптической силой Ф=2 дптр выпуклой стороной лежит на стеклянной пластинке. Радиус r, четвертого темного кольца Ньютона в проходящем свете равен 0,7 мм. Определить длину световой волны.

30.28. Диаметры di и dk двух светлых колец Ньютона соответст­венно равны 4,0 и 4,8 мм. Порядковые номера колец не определя­лись, но известно, что между двумя измеренными кольцами располо­жено три светлых кольца. Кольца наблюдались в отраженном свете (λ=500 нм). Найти радиус кривизны плосковыпуклой линзы, взя­той для опыта.

30.29. Между стеклянной пластинкой и лежащей на ней плоско­выпуклой стеклянной линзой налита жидкость, показатель прелом­ления которой меньше показателя преломления стекла. Радиус r8 восьмого темного кольца Ньютона при наблюдении в отраженном свете (λ=700 нм) равен 2 мм. Радиус R кривизны выпуклой поверх­ности линзы равен 1 м. Найти показатель преломления n жидкости.

30.30. На установке для наблюдения колец Ньютона был из­мерен в отраженном свете радиус третьего темного кольца (k=3). Когда пространство между плоскопараллельной пластиной и лин­зой заполнили жидкостью, то тот же радиус стало иметь кольцо с номером, на единицу большим. Определить показатель преломле­ния п жидкости.

30.31. В установке для наблюдения колец Ньютона свет с дли­ной волны λ=0,5 мкм падает нормально на плосковыпуклую линзу с радиусом кривизны R1=1 м, положенную выпуклой стороной на вогнутую поверхность плосковогнутой линзы с радиусом кривизны R2=2 м. Определить радиус r3 третьего темного кольца Ньютона, наблюдаемого в отраженном свете.

30.32. Кольца Ньютона наблюдаются с помощью двух одинако­вых плосковыпуклых линз радиусом R кривизны равным 1м, сло­женных вплотную выпуклыми поверхностями (плоские поверхности линз параллельны). Определить радиус r2 второго светлого кольца, наблюдаемого в отраженном свете (λ=660 нм) при нормальном па­дении света на поверхность верхней линзы.

Интерференционные приборы

30.33. На экране наблюдается интерференционная картина от двух когерентных источников света с длиной волны λ=480 нм. Когда на пути одного из пучков поместили тонкую пластинку из плавле­ного кварца с показателем преломления n=1,46, то интерференци­онная картина сместилась на m=69 полос. Определить толщину d кварцевой пластинки.

30.34. В оба пучка света интерферометра Жамена были помеще­ны цилиндрические трубки длиной l=10 см, закрытые с обоих кон­цов плоскопараллельными прозрачными пластинками; воздух из трубок был откачан. При этом наблюдалась интерференционная картина в виде светлых и темных полос. В одну из трубок был впущен водород, после чего интерференционная картина сместилась на m=23,7 полосы. Найти показатель преломления п водорода. Дли­на волны λ света равна 590 нм.

30.35. В интерферометре Жамена две одинаковые трубки дли­ной l=15 см были заполнены воздухом. Показатель преломления n1 воздуха равен 1,000292. Когда в одной из трубок воздух заменили ацетиленом, то интерференционная картина сместилась на m=80 полос. Определить показатель преломления n2 ацетилена, если в интерферометре использовался источник монохроматического света с длиной волны λ=0,590 мкм.

30.36. Определить перемещение зеркала в интерферометре Майкельсона, если интерференционная картина сместилась на т=100 полос. Опыт проводился со светом с длиной волны λ=546 нм.

30.37. Для измерения показателя преломления аргона в одно из плеч интерферометра Майкельсона поместили пустую стеклян­ную трубку длиной l=12 см с плоскопараллельными торцовыми по­верхностями. При заполнении трубки аргоном (при нормальные условиях) интерференционная картина сместилась на m=106 полос. Определить показатель преломления п аргона, если длина волны λ света равна 639 нм.

30.38. В интерферометре Майкельсона на пути одного из интерфе­рирующих пучков света (λ=590 нм) поместили закрытую с обеих сторон стеклянную трубку длиной l=10 см, откачанную до высокого вакуума. При заполнении трубки хлористым водородом произошло смещение интерференционной картины. Когда хлористый водород был заменен бромистым водородом, смещение интерференционной картины возросло на Δm=42 полосы. Определить разность Δn показателей преломления бромистого и хлористого водорода.

§ 31. ДИФРАКЦИЯ СВЕТА

Основные формулы

• Радиус k-ой. зоны Френеля:

для сферической волны

,

где а — расстояние диафрагмы с круглым отверстием от точечного источника света; b — расстояние диафрагмы от экрана, на котором ведется наблюдение дифракционной картины; k — номер зоны Фре­неля; λ длина волны;

для плоской волны

.

• Дифракция света на одной щели при нормальном падении лучей. Условие минимумов интенсивности света

, k=1,2,3,…,

где а — ширина щели; φ— угол дифракции; k — номер минимума;

λ длина волны.

Условие максимумов интенсивности света

, k=l, 2, 3,…,

где φ' — приближенное значение угла дифракции.

• Дифракция света на дифракционной решетке при нормальном падении лучей. Условие главных максимумов интенсивности

d sinφ=±kλ, k=0,1,2,3,…,

где d — период (постоянная) решетки; k — номер главного макси­мума; φ —угол между нормалью к поверхности решетки и нап­равлением дифрагированных волн.

• Разрешающая сила дифракционной решетки

,

где Δλ — наименьшая разность длин волн двух соседних спектраль­ных линий (λ и λ+Δλ), при которой эти линии могут быть видны раздельно в спектре, полученном посредством данной решетки; N — число штрихов решетки; k — порядковый номер дифракцион­ного максимума.

• Угловая дисперсия дифракционной решетки

,

линейная дисперсия дифракционной решетки

.

Для малых углов дифракции

,

где f — главное фокусное расстояние линзы, собирающей на экра­не дифрагирующие волны.

• Разрешающая сила объектива телескопа

,

где β — наименьшее угловое расстояние между двумя светлыми точками, при котором изображения этих точек в фокальной плос­кости объектива могут быть видны раздельно; D — диаметр объек­тива; λ длина волны.

• формула Вульфа — Брэгга

2d sin =kλ,

где d — расстояние между атомными плоскостями кристалла; — угол скольжения (угол между направлением пучка параллель­ных лучей, падающих на кристалл, и гранью кристалла), опре­деляющий направление, в котором имеет место зеркальное отраже­ние лучей (дифракционный максимум).

Примеры решения задач

Пример 1. На диафрагму с круглым отверстием радиусом r=1 мм падает нормально параллельный пучок света длиной волны λ=0,05 мкм. На пути лучей, прошедших через отверстие, помещают экран. Определить максимальное расстояние bmax от центра от­верстия до экрана, при котором в центре дифракционной картины еще будет наблюдаться темное пят­но.

Решение. Расстояние, при котором будет видно темное пят­но, определяется числом зон Фре­неля, укладывающихся в отвер­стии. Если число зон четное, то в центре дифракционной картины бу­дет темное пятно.

Число зон Френеля, помещаю­щихся в отверстии, убывает по мере удаления экрана от отверстия. Наименьшее четное число зон равно двум. Следовательно, максимальное расстояние, при котором еще будет наблюдаться темное пятно в центре экрана, определяется условием, согласно которому в отверстии должны поместиться две зоны Френеля.

Из рис. 31.1 следует, что расстояние от точки наблюдения O на экране до края отверстия на 2 (λ/2) больше, чем расстояние bmax.

По теореме Пифагора получим

.

Учтя, что λ<<bmах и что членом, содержащим λ2, можно пренеб­речь, последнее равенство перепишем в виде

r2=2λbmax. откуда bmax=r2/(2λ). Произведя вычисления по последней формуле, найдем

bmax=1 м.

Пример 2. На щель шириной а=0,1 мм нормально падает параллельный пучок света от монохроматического источника (λ==0,6 мкм). Определить ширину l центрального максимума в дифракционной картине, проецируемой с помощью линзы, нахо­дящейся непосредственно за щелью, на экран, отстоящий от лин­зы на расстоянии L=l м.

Решение. Центральный максимум интенсивности света за­нимает область между ближайшими от него справа и слева миниму­мами интенсивности. Поэтому ширину центрального максимума интенсивности примем равной расстоянию между этими двумя минимумами интенсивности (рис. 31.2).

Минимумы интенсивности света при дифракции от одной щели наблюдаются под углами φ, определяемыми условием

a sin φ=±kλ, (1)

где k — порядок минимума; в нашем случае равен единице.

Расстояние между двумя минимумами на экране определим не­посредственно по чертежу: l=2L tgφ. Заметив, что при малых уг­лах tg φsin φ, перепишем эту формулу в виде

/=2L sin φ. (2)

Выразим sin φ из формулы (1) и подставим его в равенство (2):

l=2Lkλ/a. (3)

Произведя вычисления по фор­муле (3), получим l=1,2 см.

Пример 3. На дифракционную решетку нормально к ее поверх­ности падает параллельный пучок света с длиной волны λ=0,5мкм. Помещенная вблизи решетки лин­за проецирует дифракционную картину на плоский экран, удаленный от линзы на L=l м. Расстоя­ние l между двумя максимумами интенсивности первого порядка, наблюдаемыми на экране, равно 20,2 см (рис. 31.3). Определить: 1) постоянную d дифракционной решетки; 2) число n штрихов на 1 см; 3) число максимумов, которое при этом дает дифракционная решетка; 4) максимальный угол φmах отклонения лучей, соот­ветствующих последнему дифракционному максимуму.

Решение 1. Постоянная d дифракционной решетки, длина волны λ и угол φ отклоне­ния лучей, соответствую­щий k-му дифракционному максимуму, связаны соот­ношением

dsin φ=kλ, (1)

где k — порядок спектра, или в случае монохрома­тического света порядок максимума.

В данном случае k=1, sin φ=tg φ (ввиду того, что l/2<<L), tgφ=(l/2)L (следует из рис. 31.3). С учетом последних трех равенств соотношение (1) примет вид

,

откуда постоянная решетки

d=2Lλ/l.

Подставляя данные, получим

d=4,95 мкм.

2. Число штрихов на 1 см найдем из формулы

п=1/d.

После подстановки числовых значений получим n=2,02-103 см-1.

3. Для определения числа максимумов, даваемых дифракцион­ной решеткой, вычислим сначала максимальное значение kmax исходя из того, что максимальный угол отклонения лучей решеткой не может превышать 90°.

Из формулы (1) запишем

. (2)

Подставляя сюда значения величин, получим

Kmax =9,9.

Число k обязательно должно быть целым. В то же время оно не может принять значение, равное 10, так как при этом значении sin φ должен быть больше единицы, что невозможно. Следователь­но, kmах=9.

Определим общее число максимумов дифракционной картины, полученной посредством дифракционной решетки. Влево и вправо от центрального максимума будет наблюдаться по одинаковому числу максимумов, равному kmах, т. е. всего 2kmах. Если учесть также центральный нулевой максимум, получим общее число мак­симумов

N=2kmax+l.

Подставляя значение kmах найдем

N=2*9+1=19.

4. Для определения максимального угла отклонения лучей, соответствующего последнему дифракционному максимуму, выра­зим из соотношения (2) синус этого угла:

sinφmax=kmaxλ/d.

Отсюда

φmax=arcsin(kmaxλ/d).

Подставив сюда значения величин λ, d, kmах и произведя вычис­ления, получим

φmах=65,4°.

Задачи

Зоны Френеля

31.1. Зная формулу радиуса k-й. зоны Френеля для сферической волны (ρk=), вывести соответствующую формулу для плоской волны.

31.2. Вычислить радиус ρ5 пятой зоны Френеля для плоского волнового фронта (λ=0,5 мкм), если построение делается для точки наблюдения, находящейся на расстоянии b=1 м от фронта волны.

31.3. Радиус ρ4 четвертой зоны Френеля для плоского волнового фронта равен 3 мм. Определить радиус ρ6 шестой зоны Френеля.

31.4. На диафрагму с круглым отверстием диаметром d=4 мм падает нормально параллельный пучок лучей монохроматического света (λ=0,5 мкм). Точка наблюдения находится на оси отверстия на расстоянии b=1 м от него. Сколько зон Френеля укладывается в отверстии? Темное или светлое пятно получится в центре дифрак­ционной картины, если в месте наблюдений поместить экран?

31.5. Плоская световая волна (λ=0,5 мкм) падает нормально на диафрагму с круглым отверстием диаметром d=l см. На каком рас­стоянии b от отверстия должна находиться точка наблюдения, что­бы отверстие открывало: 1) одну зону Френеля? 2) две зоны Френеля?

31.6. Плоская световая волна падает нормально на диафрагму с круглым отверстием. В результате дифракции в некоторых точках оси отверстия, находящихся на расстояниях bi, от его центра, наблю­даются максимумы интенсивности. 1. Получить вид функции b=f(r, λ, п), где r — радиус отверстия; λ — длина волны; п — чис­ло зон Френеля, открываемых для данной точки оси отверстием. 2. Сделать то же самое для точек оси отверстия, в кото­рых наблюдаются минимумы интенсивности.

31.7. Плоская световая волна (λ=0,7 мкм) падает нор­мально на диафрагму с круг­лым отверстием радиусом r=1,4 мм. Определить рас­стояния b1, b2, b3 от диафраг­мы до трех наиболее удален­ных от нее точек, в которых наблюдаются минимумы интенсив­ности.

31.8. Точечный источник S света (λ=0,5 мкм), плоская диафрагма с круглым отверстием радиусом r=1 мм и экран расположены, как это указано на рис. 31.4 (а=1 м). Определить расстояние b от экра­на до диафрагмы, при котором отверстие открывало бы для точки Р три зоны Френеля.

31.9. Как изменится интенсивность в точке Р (см. задачу 31.8), если убрать диафрагму?

Дифракция на щели. Дифракционная решетка

31.10. На щель шириной а=0,05 мм падает нормально монохро­матический свет (λ=0,6 мкм). Определить угол φ между первоначаль­ным направлением пучка света и направлением на четвертую тем­ную дифракционную полосу.

31.11. На узкую щель падает нормально монохроматический свет. Угол φ отклонения пучков света, соответствующих второй светлой дифракционной полосе, равен 1°. Скольким длинам волн падающего света равна ширина щели?

31.12. На щель шириной а=0,1 мм падает нормально монохрома­тический свет (λ=0,5 мкм). За щелью помещена собирающая лин­за, в фокальной плоскости которой находится экран. Что будет на­блюдаться на экране, если угол φ дифракции равен: 1) 17'; 2) 43'.

31.13. Сколько штрихов на каждый миллиметр содержит диф­ракционная решетка, если при наблюдении в монохроматическом свете (λ=0,6 мкм) максимум пятого порядка отклонен на угол φ=18°?

31.14. На дифракционную решетку, содержащую n=100 штри­хов на 1 мм, падает нормально монохроматический свет. Зритель­ная труба спектрометра наведена на максимум третьего порядка. Чтобы навести трубу на другой максимум того же порядка, ее нужно повернуть на угол Δφ=20°. Определить длину волны λ света.

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3