Неспособность справиться с возникающими в развитии нормальной науки техническими задачами по решению головоломок, конечно, не была единственной составной частью кризиса в астрономии, с которым столкнулся Коперник. При более подробном рассмотрении следует также принять во внимание социальное требование реформы календаря, которое сделало разгадку прецессии особенно настоятельной. Кроме того, более полное объяснение должно учесть критику Аристотеля в средние века, подъем неоплатонизма в эпоху Возрождения и, помимо сказанного, другие важные исторические детали. Но ядром кризиса все же остается неспособность справиться с техническими задачами. В зрелой науке – а астрономия стала таковой еще в эпоху античности – внешние факторы, подобные приведенным выше, являются принципиально важными при определении стадий упадка. Они позволяют также легко распознать упадок нормальной науки и определить область, в которой этот упадок наметился впервые. Данное обстоятельство заслуживает особого внимания. Но хотя все эти факторы необычайно важны, предмет обсуждения такого рода выходит за рамки данной работы.

Так как пример с коперниканской революцией достаточно ясен, перейдем от него ко второму, в ряде моментов отличному по значению примеру кризиса, который предшествовал появлению кислородной теории горения Лавуазье. К 70 годам ХVIII века целый комплекс факторов создал кризис в химии, но не все историки согласны друг с другом относительно его природы и относительно важности тех или иных факторов в его возникновении. Однако два фактора обычно считаются наиболее значительными: возникновение химии газов и постановка вопроса о весовых соотношениях. История химии газов начинается в ХVII веке с создания воздушного насоса и его применения в химическом эксперименте. В течение следующего столетия, применяя насос и ряд других пневматических устройств, химики вскоре приходят к выводу, что воздух, вероятно, является активным ингредиентом в химических реакциях. Но за редкими исключениями – такими сомнительными, что их можно было бы не упоминать вообще, – химики продолжают верить, что воздух – только вид газа. До 1756 года, когда Джозеф Блэк показал, что “тяжелый воздух” (СО2) может быть путем четкой процедуры выделен из обычного воздуха, считалось, что две пробы газа могут различаться только благодаря различному содержанию загрязняющих примесей.

После работы Блэка исследование газов протекало ускоренно, особенно благодаря Кавендишу, Пристли и Шееле, которые разработали ряд новых приборов, позволивших отличить одну пробу газа от другой. Все исследователи, начиная от Блэка и до Шееле, верили в теорию флогистона и часто использовали ее при проведении и интерпретации эксперимента. Шееле фактически первый получил кислород с помощью тщательно разработанной последовательности экспериментов, намереваясь дефлогистировать теплоту. К тому же общим результатом, полученным благодаря их экспериментам, было множество проб газа и свойств газа, полученных таким образом, что теория флогистона практически не “вписывалась” в проведение лабораторного опыта. Хотя ни один из названных химиков не допускал мысли, что теория должна быть заменена, они не могли применять ее постоянно. Ко времени, когда Лавуазье начал свои эксперименты с воздухом в начале 70x годов ХVIII века, было почти столько же вариантов теории флогистона, сколько было химиков‑пневматиков. Такое быстрое умножение вариантов теории есть весьма обычный симптом ее кризиса. В предисловии к своей работе Коперник также выражал недовольство подобным обстоятельством.

Однако возрастание неопределенности и уменьшение пригодности теории флогистона для пневматической химии не были единственным источником кризиса, с которым столкнулся Лавуазье. Он также сильно был озабочен проблемой объяснения увеличения веса, которое наблюдалось у большинства веществ при сжигании или прокаливании, а эта проблема тоже имеет большую предысторию. По крайней мере нескольким арабским химикам было известно, что некоторые металлы увеличивают свой вес в процессе прокаливания. В ХVII веке ряд исследователей сделали из того же факта вывод, что при прокаливании металла происходит поглощение некоторого ингредиента из атмосферы. Но в то время такой вывод для большинства химиков казался не необходимым. Если химические реакции могли изменять объем, цвет и плотность ингредиентов, то почему, спрашивается, они не могут точно так же изменять и вес? Вес не всегда рассматривался как мера количества материи. Кроме того, прирост веса при прокаливании оставался изолированным явлением. Большинство природных веществ (например, древесина) теряют вес при прокаливании, как и должно было быть в согласии с более поздним вариантом теории флогистона.

Однако в течение ХVIII века ранее удовлетворявшие ученых ответы на проблему изменения веса вызывают все более серьезные трудности. Частично вследствие того, что весы все чаще использовались как необходимое экспериментальное средство для химика, а частично вследствие того, что развитие пневматической химии сделало возможным и желательным сохранение газообразного продукта реакций, химики открывали все больше случаев увеличения веса при прокаливании. Одновременно постепенное внедрение теории тяготения Ньютона привело химиков к мнению, что увеличение в весе должно означать увеличение количества материи. Эти выводы не являются следствием отказа от теории флогистона, ибо данная теория могла быть согласована многими различными способами с такими выводами. Например, можно было предположить, что флогистон имеет отрицательный вес, либо частицы огня или чем‑то еще проникают в прокаливаемое вещество, как только флогистон покидает его. Были и другие объяснения. Но если проблема приращения веса не приводила к отказу от теории флогистона, то все же она привела к большому числу специальных исследований, где эта проблема становилась основной. Одно из них, озаглавленное “Флогистон как субстанция, имеющая вес и [анализируемая] на основе изменения веса, производимого флогистоном в веществах в процессе его соединения с ними”, было доложено на заседании Французской Академии в начале того самого 1772 года, в конце которого Лавуазье передал свою знаменитую запечатанную записку в Академию. До того, как эта записка была написана, проблема, такая острая для химиков, много лет оставалась неразрешимой головоломкой, и для того, чтобы справиться с ней, было разработано много различных версий теории флогистона. Подобно проблемам пневматической химии, проблемы изменения веса все больше и больше затрудняли понимание того, что собственно представляет собой теория флогистона. Все еще признаваемая и принимаемая в качестве средства исследования, парадигма химии ХVIII века тем не менее постепенно теряла свой статус в качестве единственного способа объяснения этих явлений. Чем дальше, тем больше исследование, направляемое ею, напоминало то исследование, которое проводилось под контролем конкурирующих школ допарадигмального периода. Это являлось другим типичным следствием кризиса.

Рассмотрим теперь в качестве третьего и заключительного примера кризис в физике конца ХIХ века, который подготовил путь для возникновения теории относительности. Один источник кризиса можно проследить в конце ХVII века, когда ряд натурфилософов, особенно Лейбниц, критиковали Ньютона за сохранение, хотя и в модернизированном варианте, классического понятия абсолютного пространства. Больше того, они высказали догадку, что полностью релятивистское понятие пространства и движения, которое и было открыто позднее, имело бы большую эстетическую привлекательность. Но их критика была чисто логической. Подобно ранним сторонникам Коперника, которые критиковали доказательства Аристотелем неподвижности Земли, они не помышляли о том, что переход к релятивистской системе может иметь осязаемые последствия. Ни в одном пункте они не соотнесли свои точки зрения с теми проблемами, которые возникали в результате применения теории Ньютона к природным явлениям. В результате их точки зрения умерли с ними вместе в течение первых десятилетий ХVIII века и вновь воскресли только в последние десятилетия ХIХ века, когда они приобрели совершенно иное отношение к практике физических исследований.

Технические проблемы, с которыми релятивистская философия пространства в конечном счете должна была быть соотнесена, начали проникать в нормальную науку с принятием волновой теории света примерно после 1815 года, хотя они не вызвали никакого кризиса вплоть до 90‑х годов ХIХ века. Если свет является волновым движением, распространяющимся в механическом эфире, и подчиняется законам Ньютона, тогда и наблюдение небесных явлений, и эксперимент в земных условиях дают потенциальные возможности для обнаружения “эфирного ветра”. Из небесных явлений только наблюдения за аберрацией звезд обещали быть достаточно точными для получения надежной информации, и обнаружение “эфирного ветра” с помощью измерения аберраций становится общепризнанной проблемой нормального исследования. Однако подобные измерения, несмотря на большое число специально сконструированных приборов, не обнаружили никакого наблюдаемого “эфирного ветра”, и поэтому проблема перешла от экспериментаторов и наблюдателей к теоретикам. В середине века Френель, Стокс и другие разработали многочисленные варианты теории эфира, предназначенные для объяснения неудачи в наблюдении “эфирного ветра”. Каждый из этих вариантов допускал, что движущееся тело увлекает за собой частички эфира. И каждый из вариантов достаточно успешно объяснял отрицательные результаты не только наблюдения небесных явлений, но также экспериментов на земле, включая знаменитый эксперимент Майкельсона и Морли. Но конфликта все еще не было, исключая конфликты между различными толкованиями. К тому же из‑за отсутствия соответствующей экспериментальной техники эти конфликты никогда не были острыми.

Ситуация вновь изменилась только благодаря постепенному принятию электродинамической теории Максвелла в последние два десятилетия ХIХ века. Сам Максвелл был ньютонианцем и верил, что свет и электромагнетизм вообще обусловлены изменчивыми перемещениями частиц механического эфира. Его наиболее ранние варианты теории электричества и магнетизма были направлены на использование гипотетических свойств, которыми он наделял данную среду. Эти свойства были опущены в окончательном варианте его теории, но он все еще верил, что его электромагнитная теория совместима с некоторым вариантом механической точки зрения Ньютона. От него и его последователей требовалось соответствующим образом четко сформулировать эту точку зрения. Однако на практике, как это не раз случалось в развитии науки, ясная формулировка теории встретилась с необычайными трудностями. Точно так же, как астрономический план Коперника, несмотря на оптимизм автора, породил возрастающий кризис существовавших тогда теорий движения, теория Максвелла вопреки своему ньютонианскому происхождению создала соответственно кризис парадигмы, из которой она произошла. Кроме того, пункт, в котором кризис разгорелся с наибольшей силой, был связан как раз с только что рассмотренными проблемами – проблемами движения относительно эфира.

Исследование Максвеллом электромагнитного поведения движущихся тел не затрагивало вопроса о сопротивлении эфирной среды, и ввести это сопротивление в его теорию оказалось чрезвычайно трудно. В результате получилось, что целый ряд ранее осуществленных наблюдений, направленных на то, чтобы обнаружить “эфирный ветер”, указывал на аномалию. Поэтому период после 1890 года был отмечен долгой серией попыток – как экспериментальных, так и теоретических – определить движение относительно эфира и внедрить в теорию Максвелла представление о сопротивлении эфира. Экспериментальные исследования были сплошь безуспешными, хотя некоторые ученые сочли результаты неопределенными. Что же касается теоретических попыток, то они дали ряд многообещающих импульсов, особенно исследования Лоренца и Фицджеральда, но в то же время они вскрыли и другие трудности; в конечном итоге произошло точно такое же умножение теорий, которое, как мы обнаружили ранее, сопутствует кризису. Все это противоречит утверждениям историков, что специальная теория относительности Эйнштейна возникла в 1905 году.

Эти три примера почти полностью типичны. В каждом случае новая теория возникла только после резко выраженных неудач в деятельности по нормальному решению проблем. Более того, за исключением примера со становлением гелиоцентрической теории Коперника, где внешние по отношению к науке факторы играли особенно большую роль, указанные неудачи и умножение теорий, которые являются симптомом близкого крушения прежней парадигмы, длились не более чем десяток или два десятка лет до формулировки новой теории. Новая теория предстает как непосредственная реакция на кризис. Заметим также, хотя это, может быть, и не столь типично, что проблемы, по отношению к которым отмечается начало кризиса, бывают все именно такого типа, который давно уже был осознан. Предшествующая практика нормальной науки дала все основания считать их решенными или почти решенными. И это помогает объяснить, почему чувство неудачи, когда оно наступает, бывает столь острым. Неудача с новым видом проблем часто разочаровывает, но никогда не удивляет. Ни проблемы, ни головоломки не решаются, как правило, с первой попытки. Наконец, всем этим примерам свойствен еще один признак, который подчеркивает важную роль кризисов: разрешение кризиса в каждом из них было, по крайней мере частично, предвосхищено в течение периода, когда в соответствующей науке не было никакого кризиса, но при отсутствии кризиса эти предвосхищения игнорировались.

Единственное полное предвосхищение, которое в то же время и наиболее известно, – предвосхищение Коперника Аристархом в III веке до н. э. Часто говорят, что если бы греческая наука была менее дедуктивной и меньше придерживалась догм, то гелиоцентрическая астрономия могла начать свое развитие на восемнадцать веков раньше, чем это произошло на самом деле. Но говорить так – значит игнорировать весь исторический контекст данного события. Когда было высказано предположение Аристарха, значительно более приемлемая геоцентрическая система удовлетворяла всем нуждам, для которых могла бы предположительно понадобиться гелиоцентрическая система. В целом развитие птолемеевской астрономии, и ее триумф и ее падение, происходит после выдвижения Аристархом своей идеи. Кроме того, не было очевидных оснований для принятия идеи Аристарха всерьез. Даже более тщательно разработанный проект Коперника не был ни более простым, ни более точным, нежели система Птолемея. Достоверные проверки с помощью наблюдения, как мы увидим более ясно далее, не обеспечивали никакой основы для выбора между ними. При этих обстоятельствах одним из факторов, который привел астрономов к коперниканской теории (и который не мог в свое время привести их к идее Аристарха), явился осознаваемый кризис, которым в первую очередь было обусловлено создание новой теории. Астрономия Птолемея не решила своих проблем, и настало время предоставить шанс конкурирующей теории. Два других наших примера не обнаруживают столь же полных предвосхищений, однако несомненно, что одна из причин, в силу которых теории горения, объясняемого поглощением кислорода из атмосферы (развитые в ХVII веке Реем, Гуком и Майовом), не получили достаточного распространения, состояла в том, что они не устанавливали никакой связи с проблемами нормальной научной практики, представляющими трудности. И то, что ученые ХVIII – ХIХ веков долго пренебрегали критикой Ньютона со стороны релятивистски настроенных авторов, в значительной степени связано с подобной неспособностью к сопоставлению различных точек зрения.

Философы науки, неоднократно показывали, что на одном и том же наборе данных всегда можно возвести более чем один теоретический конструкт. История науки свидетельствует, что, особенно на ранних стадиях развития новой парадигмы, не очень трудно создавать такие альтернативы. Но подобное изобретение альтернатив – это как раз то средство, к которому ученые, исключая периоды допарадигмальной стадии их научного развития и весьма специальных случаев в течение их последующей эволюции, прибегают редко. До тех пор пока средства, представляемые парадигмой, позволяют успешно решать проблемы, порождаемые ею, наука продвигается наиболее успешно и проникает на самый глубокий уровень явлений, уверенно используя эти средства. Причина этого ясна. Как и в производстве, в науке смена инструментов – крайняя мера, к которой прибегают лишь в случае действительной необходимости. Значение кризисов заключается именно в том, что они говорят о своевременности смены инструментов.

Х

Революция как изменение взгляда на мир

Рассматривая результаты прошлых исследований с позиций современной историографии, историк науки может поддаться искушению и сказать, что, когда парадигмы меняются, вместе с ними меняется сам мир. Увлекаемые новой парадигмой ученые получают новые средства исследования и изучают новые области. Но важнее всего то, что в период революций ученые видят новое и получают иные результаты даже в тех случаях, когда используют обычные инструменты в областях, которые они исследовали до этого. Это выглядит так, как если бы профессиональное сообщество было перенесено в один момент на другую планету, где многие объекты им незнакомы, да и знакомые объекты видны в ином свете. Конечно, в действительности все не так: нет никакого переселения в географическом смысле; вне стен лаборатории повседневная жизнь идет своим чередом. Тем не менее изменение в парадигме вынуждает ученых видеть мир их исследовательских проблем в ином свете. Поскольку они видят этот мир не иначе, как через призму своих воззрений и дел, постольку у нас может возникнуть желание сказать, что после революции ученые имеют дело с иным миром.

Элементарные прототипы для этих преобразований мира ученых убедительно представляют известные демонстрации с переключением зрительного гештальта. То, что казалось ученому уткой до революции, после революции оказывалось кроликом. Тот, кто сперва видел наружную стенку коробки, глядя на нее сверху, позднее видел ее внутреннюю сторону, если смотрел снизу. Трансформации, подобные этим, хотя обычно и более постепенные и почти необратимые, всегда сопровождают научное образование. Взглянув на контурную карту, студент видит линии на бумаге, картограф – картину местности. Посмотрев на фотографию, сделанную в пузырьковой камере, студент видит перепутанные и ломаные линии, физик – снимок известных внутриядерных процессов. Только после ряда таких трансформаций видения студент становится “жителем” научного мира, видит то, что видит ученый, и реагирует на это так, как реагирует ученый. Однако мир, в который студент затем входит, не представляет собой мира, застывшего раз и навсегда. Этому препятствует сама природа окружающей среды, с одной стороны, и науки – с другой. Скорее он детерминирован одновременно и окружающей средой, и соответствующей традицией нормальной науки, следовать которой студент научился в процессе образования. Поэтому во время революции, когда начинает изменяться нормальная научная традиция, ученый должен научиться заново воспринимать окружающий мир – в некоторых хорошо известных ситуациях он должен научиться видеть новый гештальт. Только после этого мир его исследования будет казаться в отдельных случаях несовместимым с миром, в котором он “жил” до сих пор. Это составляет вторую причину, в силу которой школы, исповедующие различные парадигмы, всегда действуют как бы наперекор друг другу.

Конечно, в своих наиболее обычных формах гештальт‑эксперименты иллюстрируют только природу перцептивных преобразований. Они ничего не говорят нам о роли парадигм или роли ранее приобретенного опыта в процессе восприятия. По этому вопросу есть обширная психологическая литература, большая часть которой берет начало с первых исследований Ганноверского института. Испытуемый, которому надевают очки, снабженные линзами, переворачивающими изображение, первоначально видит внешний мир перевернутым “вверх дном”. Сначала его аппарат восприятия функционирует так, как он был приспособлен функционировать без очков, и в результате происходит полная дезориентация, острый кризис личности. Но после того, как субъект начинает привыкать рассматривать свой новый мир, вся его визуальная сфера преобразуется заново, обычно после промежуточного периода, когда она пребывает просто в состоянии беспорядка. С этого времени объекты снова видятся такими, какими они были до того, как были надеты очки. Ассимиляция поля зрения, бывшего ранее аномальным, воздействовала на поле зрения и изменила его. Как в прямом, так и в переносном смысле слова можно сказать, что человек, привыкший к перевернутому изображению, испытывает революционное преобразование видения.

Испытуемые в опыте с аномальными игральными картами, рассмотренном в VI разделе, переживают совершенно аналогичную трансформацию. Пока испытуемые не поймут благодаря более длительной экспозиции, что существуют и аномальные карты, они воспринимают только те типы карт, которые позволяет им распознавать ранее полученный опыт. Однако как только опыт давал им необходимые дополнительные категории, они приобретали способность замечать все аномальные карты при первой же проверке, достаточно продолжительной, чтобы идентификация оказалась возможной. Другие эксперименты показывают, что восприятие размера, цвета и тому подобных свойств объектов, обнаруживаемых в эксперименте, также изменяется под влиянием предшествующего опыта и обучения испытуемого. Обзор богатой экспериментальной литературы, из которой взяты эти примеры, наводит на мысль, что предпосылкой самого восприятия является некоторый стереотип, напоминающий парадигму. То, что человек видит, зависит от того, на что он смотрит, и от того, что его научил видеть предварительный визуально‑концептуальный опыт. При отсутствии такого навыка может быть, говоря словами Уильяма Джемса, только «форменная мешанина».

В последние годы те, кто интересовался историей науки, считали эксперименты, вроде описанных нами выше, исключительно важными. В частности, Н. Хансон использовал гештальт‑эксперименты для исследования некоторых следствий, к которым приводят научные убеждения, подобные тем, которые я здесь затронул. Другие авторы неоднократно отмечали, что история науки могла быть изложена лучше и быть более осмысленной, если бы можно было допустить, что ученые время от времени испытывали сдвиги в восприятии, подобные описанным выше. Однако, хотя психологические эксперименты и заставляют задуматься, они не могут быть по своей природе более чем экспериментами. Они действительно раскрывают характеристики восприятия, которые могли быть центральными в развитии науки, но они не показывают, что точное и контролируемое наблюдение, выполняемое ученым‑исследователем, вообще включает в себя эти характеристики. Кроме того, сама природа таких экспериментов делает любую непосредственную демонстрацию этой проблемы невозможной. Если исторический пример призван показать, что психологические эксперименты вносят свой вклад в объяснение развития науки, то мы должны сначала отметить те виды доказательств, которые мы можем и которые не можем ожидать от истории.

Человек, участвующий в гештальт‑экспериментах, знает, что его восприятие деформировано, потому что он может неоднократно производить сдвиги восприятия в ту или другую сторону, пока он держит в руках одну и ту же книгу или газетный лист. Понимая, что ничто в окружающей обстановке не изменяется, он направляет свое внимание в основном не на изображение (утки или кролика), а на линии на бумаге, которую он разглядывает. В конце концов он может даже научиться видеть эти линии, не видя ни той, ни другой фигуры, и затем он может сказать (чего он не мог с полным основанием сделать раньше), что он видит именно линии, но видит их при этом то как утку, то как кролика. Точно так же испытуемый в опыте с аномальными картами знает (или, более точно, может быть убежден), что его восприятие должно быть деформировано, потому что внешний авторитет экспериментатора убеждает его что независимо от того, что он увидел, он все время смотрел на черную пятерку червей. В обоих этих случаях как и во всех подобных психологических экспериментах, эффективность демонстрации зависит от возможностей анализа таким способом. Если бы не было внешнего стандарта, по отношению к которому регистрируется переключение видения, то нельзя было бы и сделать вывода об альтернативных возможностях восприятия.

Однако в научном исследовании складывается прямо противоположная ситуация. Ученый может полагаться только на то, что он видит своими глазами или обнаруживает посредством инструментов. Если бы был более высокий авторитет, обращаясь к которому можно было бы показать наличие сдвига в видении мира ученым тогда этот авторитет сам по себе должен был бы стать источником его данных, а характер его видения стал бы источником проблем (как характер видения испытуемого в процессе эксперимента становится источником проблемы для психолога). Проблемы такого же рода могли бы возникнуть, если бы ученый мог переключать в ту или другую сторону свое восприятие, подобно испытуемому в гештальт‑экспериментах. Период, когда свет считался “то волной, то потоком частиц”, был периодом кризиса – периодом, когда в атмосфере научных исследований витало предчувствие какой‑то ошибки, и он закончился только с развитием волновой механики и осознанием того, что свет есть самостоятельная сущность, отличная как от волны, так и от частицы. Поэтому в науках, когда происходит переключение восприятия, которое сопутствует изменениям парадигм, мы не можем рассчитывать, что ученые сразу же улавливают эти изменения. Глядя на Луну, ученый, признавший коперниканскую теорию, не скажет: “Раньше я обычно видел планету, а сейчас я вижу спутник”. Такой оборот речи имел бы смысл, если бы система Птолемея была бы правильной. Вместо этого ученый, признавший новую астрономию, скажет: “Раньше я считал Луну (или видел Луну) планетой, но я ошибался”. Такой вид утверждения возвращает нас к последствиям научной революции. Если такое высказывание скрывает сдвиг научного видения или какую‑либо другую трансформацию мышления, имеющую тот же результат, то мы не можем рассчитывать на непосредственное свидетельство о сдвиге. Скорее мы должны рассмотреть косвенные данные, изучить деятельность ученого с новой парадигмой, которая отличается от его прежней деятельности.

Обратимся к фактам и посмотрим, какие виды трансформации мира ученого может раскрыть историк, верящий в такие изменения. Открытие Уильямом Гершелем Урана представляет собой первый пример, причем такой, который в значительной степени аналогичен эксперименту с аномальными картами. По крайней мере в семнадцати случаях между 1690 и 1781 годами ряд астрономов, в том числе несколько лучших наблюдателей Европы, видели звезду в точках, которые, как мы теперь полагаем, должен был проходить в соответствующее время Уран. Один из лучших наблюдателей среди этой группы астрономов действительно видел звезду четыре ночи подряд в 1769 году, но не заметил движения, которое могло бы навести на мысль о другой идентификации. Гершель, когда впервые наблюдал тот же самый объект двенадцать лет спустя, использовал улучшенный телескоп своей собственной конструкции. В результате ему удалось заметить видимый диаметр диска, по меньшей мере необычный для звезд. Ввиду этого явного несоответствия он отложил идентификацию до получения результатов дальнейшего наблюдения. Это наблюдение обнаружило движение Урана относительно других звезд, и Гершель поэтому объявил, что он наблюдал новую комету! Только несколько месяцев спустя, после безуспешных попыток “втиснуть” наблюдаемое движение в кометную орбиту, Ликселл предположил, что орбита, вероятно, является планетарной4. Когда это предположение было принято, то в мире профессиональных астрономов стало несколько меньше звезд, а планет на одну больше. Небесное тело, которое наблюдалось время от времени на протяжении почти столетия, стало рассматриваться иначе после 1781 года потому, что, подобно аномальной игральной карте, оно больше не соответствовало категориям восприятия (звезды или кометы), которые могла предложить парадигма, доминировавшая ранее.

Однако сдвиг восприятия, который дал астрономам возможность увидеть Уран как планету, вероятно, воздействовал не только на восприятие этого ранее наблюдавшегося объекта. Его последствия были более значительными. Возможно, хотя это не вполне ясно, небольшое изменение парадигмы, вызванное Гершелем, помогло подготовить астрономов к быстрому открытию после 1801 года множества малых планет, или астероидов. Из‑за того, что астероиды весьма малы, их изображения в телескопе не дают видимого диска – аномалии, которая ранее насторожила Гершеля. Тем не менее астрономы, подготовленные теперь к обнаружению дополнительных планет, смогли с помощью обычных инструментов обнаружить 20 планет в первые 50 лет ХIХ столетия. История астрономии располагает многими другими примерами изменений в научном восприятии, вызванных влиянием на него парадигмы; некоторые из этих примеров не подлежат сомнению. Разве можно считать, например, случайностью, что астрономы на Западе впервые увидели изменение в ранее неизменных небесных явлениях в течение полстолетия после того, как Коперник предложил новую парадигму? Китайцы, чьи космологические представления не исключали подобных изменений на небе, зафиксировали появление множества новых звезд на небе в значительно более ранний период. Кроме того, даже без помощи телескопа китайцы систематически отмечали появление солнечных пятен за несколько столетий до того, как их наблюдали Галилей и его современники. Обнаружение солнечных пятен и открытие новой звезды не были единственными примерами изменений в небесных явлениях, которые были признаны в западной астрономии сразу же после создания теории Коперником. Используя традиционные инструменты, иногда такие примитивные, как кусок нити, астрономы конца ХVI века неоднократно открывали, что кометы странствуют в космическом пространстве, которое считалось раньше безраздельным владением неизменных звезд и планет. Сама легкость и быстрота, с которыми астрономы открывали новые явления, когда наблюдали за старыми объектами с помощью старых инструментов, вызывают желание сказать, что после Коперника астрономы стали жить в ином мире. Во всяком случае, изменения, происшедшие в их исследованиях, были таковы, как если бы дело обстояло таким образом.

Предыдущие примеры взяты из астрономии, потому что сообщения о наблюдениях небесных явлений часто излагаются с помощью терминов, относящихся к относительно чистому наблюдению. Только в таких сообщениях мы можем надеяться найти полный параллелизм между наблюдениями ученых и наблюдениями над испытуемыми в психологических экспериментах. Но мы не обязаны настаивать на такой полной аналогии; мы многое должны выиграть от ослабления нашего требования. Если удовлетвориться обычным употреблением слова “видеть”, то мы легко сможем осознать, что уже встречались со многими другими примерами сдвигов в научном восприятии, которые сопутствуют изменению парадигмы. Такое расширенное употребление терминов “восприятие” и “видение” вскоре потребует специального обоснования; но для начала позвольте мне проиллюстрировать их применение на практике.

Обратим внимание снова на два наших ранее приведенных примера из истории электричества. В течение ХVII века, когда исследование ученых, интересующихся электрическими явлениями, руководствовалось той или иной теорией “истечения”, они неоднократно видели, как мелкие частички отскакивали или спадали с наэлектризованных тел, притягивающих их. По крайней мере в ХVII веке наблюдатели утверждали, что они видели это явление; и у нас нет никаких оснований сомневаться в правильности их сообщений о восприятии больше, чем наших собственных. Используя такую же аппаратуру, что и раньше, современный наблюдатели мог бы видеть электростатическое отталкивание (а не механическое или гравитационное воздействие), но исторически (не считая одного всеми игнорируемого исключения) никто не видел в этом явлении электростатического отталкивания как такового до тех пор, пока мощная аппаратура Хауксби не позволила значительно усилить этот эффект. Отталкивание после контактной электризации было, однако, лишь одним из многих эффектов отталкивания, которые увидел Хауксби. Благодаря его исследованиям (до некоторой степени подобно тому, что имело место при переключении гештальта) отталкивание сразу стало фундаментальным проявлением электризации, и затем оставалось только объяснить притяжение. Электрические явления, наблюдаемые в начале ХVIII века, были и более тонкими и более разнообразными, нежели явления, которые видел наблюдатель в ХVII веке. Или другой пример. После усвоения парадигмы Франклина исследователи электрических явлений, наблюдая опыты с лейденской банкой, увидели нечто отличное от того, что они видели прежде. Прибор стал конденсатором, для которого не требовалась ни форма банки, ни форма стакана. Вместо этого были применены две проводящие обкладки, одна из которых не была первоначально частью прибора. Как дискуссии в книгах, так и иллюстрации в них свидетельствуют, что две металлические пластинки с изолятором между ними послужили прототипом для класса этих приборов. В то же время получили новые описания другие индукционные эффекты, а некоторые вообще наблюдались впервые.

Сдвиги такого рода не ограничиваются областью астрономии и электричества. Мы уже отметили некоторые подобные трансформации восприятия, которые могут быть выведены из истории химии. Мы говорили, что Лавуазье увидел кислород там, где Пристли видел дефлогистированный воздух и где другие не видели ничего вообще. Однако, научившись видеть кислород, Лавуазье также должен был изменить свою точку зрения на многие другие, более известные вещества. Он, например, должен был увидеть руду сложного состава там, где Пристли и его современники видели обычную землю, кроме этих, должны были быть и другие подобные изменения. Как бы там ни было, в результате открытия кислорода Лавуазье по‑иному видел природу. И так как нет другого выражения для этой гипотетически установленной природы, которую Лавуазье “видел по‑иному”, мы скажем, руководствуясь принципом экономии, что после открытия кислорода Лавуазье работал в ином мире.

Я попытаюсь в дальнейшем избежать этого странного оборота речи, но сначала мы рассмотрим дополнительный пример его употребления. Этот пример взят из наиболее известной части исследования Галилея. Со времени глубокой древности многие видели, как то или иное тяжелое тело раскачивается на веревке или цепочке до тех пор, пока в конце концов не достигнет состояния покоя. Для последователей Аристотеля, которые считали, что тяжелое тело движется в силу своей собственной природы из более высокой точки к состоянию естественного покоя в более низкую точку, качающееся тело было просто телом, которое падает, испытывая сопротивление. Сдерживаемое цепочкой, оно могло достигнуть покоя в своей низкой точке только после колебательного движения в течение значительного интервала времени. С другой стороны, Галилей, наблюдая за качающимся телом, увидел маятник как тело, которое почти периодически осуществляет движение снова и снова, и так без конца. Сумев увидеть это (а этого уже было немало), Галилей наблюдал также другие свойства маятника и выдвинул многие из наиболее значительных идей новой динамики, касающейся этих свойств. Например, наблюдая свойства маятника, Галилей получил свой единственный важный и серьезный аргумент в пользу независимости веса и скорости падения, а также аргумент, указывающий на связь между высотой и конечной скоростью движения по наклонной плоскости. Все эти явления природы Галилей видел иначе, чем они представлялись до него.

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20