Нефть известна человечеству с незапамятных времен. Уже за 6000 лет до нашей эры люди использовали нефть для отопления и освещения. Наиболее древние промыслы нефти находились на берегах Евфрата и Керчи.

Существуют две теории происхождения нефти: органическая и неорганическая.

Сторонники неорганической нефти считают, что нефть образовалась из минеральных веществ. К приверженцам неорганического происхождения нефти относится и . Согласно этой теории нефть образуется на больших глубинах при высокой температуре вследствие взаимодействия воды с карбидами металлов. Вода проникает внутрь по трещинам-разломам во время горообразовательных процессов. Схема процесса с образованием этана иллюстрируется на примере карбида железа: 2FeC + 3H2O = Fe2O3 + C2H6. В общем виде реакцию можно представить так: МСm + mH2O = MOm + (CH2)m. Образующиеся в газообразном состоянии углеводороды, по мнению Менделеева, поднимаются по тем же трещинам в верхнюю холодную часть земной коры, где они конденсируются и накапливаются в пористых осадочных горных породах.

Интересно, что в момент выдвижения Менделеевым этой теории карбиды металлов в глубинных породах еще не были известны. Только в сравнительно недавнее время обнаружены карбиды железа, титана, хрома, вольфрама, кремния и других элементов. Однако они встречаются редко и не образуют крупных скоплений. Поэтому трудно объяснить крупные месторождения нефти с помощью этой теории. Кроме того, в настоящее время считается, что вода с поверхности земли не способна поступать по трещинам на большие глубины. А своей воды глубинные слои земли не содержат. Поэтому можно предполагать, что такой способ образования углеводородов возможен, но он не является основным для образования нефти.

В середине 20 века выдвинул новую гипотезу о минеральном происхождении нефти. Согласно этой гипотезе, в основе механизма образования нефти лежит глубинная высокотемпературная реакция CO и водорода с образованием метана и воды, а также другие реакции между компонентами смеси CO, CO2, H2O и CH4, которая существует в глубине Земли. По мнению Кудрявцева, при высоких температурах в результате взаимодействия водорода и углерода могут образовываться различные радикалы (СН, СН2 и СН3), которые в результате соединения между собой образуют различные углеводороды. Образующиеся вещества при высоких температурах в глубинных слоях подвергаются деструкции и полимеризации и образуют сложную смесь углеводородов, которую представляет собой нефть.

Сторонники органического происхождения нефти считают, что она произошла вследствие воздействия высоких температур на органические вещества растительного и животного происхождения. Большое влияние на эту гипотезу оказал ученый . В пользу теории органического происхождения нефти говорит гораздо большее число фактов.

5.6. Мировые запасы нефти

В настоящее время более 15 стран являются производителями нефти. Одна из последних оценок мировых запасов нефти и прогнозов сокращения запасов сделана в 1995г. Ниже приведены данные по сокращению запасов исходя из объемов добычи по состоянию на 1995г (см. табл. 6).

Табл. 6

Мировые запасы нефти на 1996г и темпы их предполагаемых сокращений (млн. тонн).

Страна

Запасы, млн т, на 1995г.

Добыча в 1995г.

Запасы на 1.1.2010г.

Запасы на 1.1.2020г.

Запасы на 1.1.2030г.

Великобритания

588,1

130

0

0

0

Норвегия

1153,7

140

0

0

0

Алжир

1260,3

60

460

0

0

Россия (оценка)

10000

400

4400

400

???

Казахстан

1015

30

620

320

20

Ливия

4041,1

70

3000

2300

1600

Иран

12082,0

180

9600

7800

6000

Ирак

13698,6

?

12500

12000

11000

Кувейт

13220,2

100

11800

10800

9800

ОАЭ

13438,3

100

12000

11000

10000

Сауд. Аравия

35782,2

400

30200

26200

22200

США

3076,3

330

0

0

0

Канада

671

90

0

0

0

Нигерия

2853,2

100

1450

450

0

Мексика

6818,5

150

4700

3200

1700

Венесуэла

8832,7

140

6980

5630

4280

Китай

3287,7

150

1200

0

0

В настоящее время в мире добывается свыше 3 млрд. тонн нефти, две трети которой потребляется развитыми странами Запада и Японией. Только США потребляет около 1 млрд. тонн.

В западном полушарии наиболее богаты нефтью Венесуэла, Мексика и США. В восточном полушарии основные запасы нефти находятся в Саудовской Аравии (25% от общих запасов) и в странах Персидского залива (Иране, Ираке, Кувейте и ОАЭ). В ближайшие 20-30 лет эти страны окажутся едва ли не единственными нефтедобывающими странами (до 90% запасов). Неплохие запасы имеет и Россия, но по прогнозам ее запасы закончатся также через 30 лет.

Состав нефти

Если говорить об элементном составе, то основными ее элементами являются углерод (83-87%) и водород (11-14%). Наиболее часто встречающаяся примесь - сера. Ее содержание может доходить до 7%, но во многих нефтях ее гораздо меньше или практически нет. Сера может содержаться в чистом виде, в виде сероводорода и меркаптанов. Сера усиливает коррозию металлов и обуславливает загрязнение окружающей среды, так как она окисляется в диоксид серы – один из наиболее вредных выбросов от сжигания топлива. Нефть считается малосернистой, если содержит менее 0,5% серы и высокосернистой, если содержит более 2% серы.

Азот встречается в количестве не более 1,7%.

Кислород встречается в виде соединений (кислоты, эфиры, фенолы) и его в нефти не более 3,6%.

Групповой состав нефти – это содержание в ней различных углеводородов. Нефть представляет собой очень сложную смесь различных углеводородов – несколько сотен видов. Она содержит такие группы углеводородов, как парафиновые (алканы), нафтеновые и ароматические. Ненасыщенные углеводороды (алкены) в нефти отсутствуют.

Парафиновые углеводороды. Это линейные (нормальные) насыщенные углеводороды общей формулы CnH2n+2. При n от 1 до 4 это газы. При n от 5 до 16 это жидкости с температурой кипения от 36 до 287°С, остальные – твердые вещества при обычных температурах. Твердые углеводороды называют парафинами. При снижении температуры они могут выделиться в кристаллическом состоянии и создать проблемы с транспортировкой нефти
по нефтепроводам.

Максимальное количество углеродных атомов в алканах нефти достигает 60. Температура плавления твердых алканов равна меняется от 22°С до 102°С.

Нафтены. Кроме нормальных углеводородов в нефти содержатся циклические алканы, начиная с циклопентана С5Н10, и его гомологи. Общая формула нафтенов CnH2n. Это важнейшие компоненты топлив и смазочных масел (улучшают эксплуатационные свойства бензинов), а также сырье для получения ароматических углеводородов.

Ароматические углеводороды (арены). К ним относится бензол С6Н6 и его более высокомолекулярные гомологи, состоящие из двух колец (нафталин) и более. Ароматические углеводороды являются важнейшими компонентами моторных топлив, и их концентрация увеличивается при риформинге нефти.

Кроме углеводородов в нефти встречается большое количество кислородных, серных и азотистых соединений. К числу основных кислородных соединений относятся нафтеновые кислоты и асфальто-смолистые вещества. Нафтеновые кислоты имеют общую формулу СnH2n-1COOH. Они вызывают коррозию металлов. Асфальто-смолистые вещества – это сложные высокомолекулярные соединения, содержащие кроме, углерода и водорода, серу (до 7%) и азот (до 1%). При обычных температурах они представляют собой малотекущее или твердое вещество. Часть, растворимая в воде, называется смолами, а нерастворимая – асфальтами, или асфальтенами. Молекулярная масса асфальтенов находится в диапазоне .

Азотистые соединения представлены порфиринами, которые, как считается, образовались из хлорофилла растений и гемоглобина животных.

5.7. Переработка нефти

При переработке нефти от нее отделяют газ, очищают от механических примесей, удаляют соли, влагу и сероводород, и подвергают фракционной перегонке.

При перегонке нефть разделяется на следующие фракции:

·  Бензиновая с температурой кипения углеводородов°С. Основные углеводороды С5 – С12.

·  Керосиновая с температурой кипения углеводородов °С. Основные углеводороды С9 – С16.

·  Дизельная (газойль) с температурой кипения углеводородов 180-350°С. Основные углеводороды С12 – С20.

·  Мазут с температурой кипения более 350°С.

Мазут также может перегоняться, но только под вакуумом. Он делится на топливный мазут (350-500°С), гудрон (более 500°С) и различные масла.

Одной перегонки нефти недостаточно для получения бензинов. Важную роль в бензинах играют ароматические углеводороды, которых в нефти мало, а также разветвленные углеводороды (алканы), и ненасыщенные углеводороды (алкены), которых в нефти нет совсем. Эти углеводороды улучшают детонационные свойства бензинов, и от их концентрации зависит октановое число (марка) бензина. Поэтому после ректификации нефтяные фракции подвергаются крекингу и риформингу.

Крекинг

Это слово означает расщепление. Крекинг является каталитическим высокотемпературным процессом. В качестве катализатора используют смесь глинозема и кремнезема, оксиды хрома и молибдена. При крекинге происходит распад углеводородов на более маленькие молекулы, при этом одновременно образуются алканы и алкены. Например, расщепление С24Н50:

С24Н50 = С12Н24 (алкен)+ С12Н26(алкан) (53)

В свою очередь, образующийся алкан также распадается по аналогичной схеме:

С12Н26 = С6Н12(алкен)+ С6Н14(алкан) (54)

Одновременно происходит изомеризация линейных углеводородов в разветвленные и дегидрогенизация насыщенных углеводородов с образованием алкенов.

Таким образом, в результате крекинга в нефтяной фракции возрастает количество разветвленных алканов и ненасыщенных углеводородов.

Основным сырьем для крекинга является мазут, но можно использовать и другие нефтяные фракции от перегонки нефти.

Риформинг

Риформинг представляет собой процесс превращения циклических и линейных углеводородов в ароматические. Ароматические углеводороды имеют высокое октановое число и должны содержаться в высокооктановых марках бензина.

Риформинг, также как и крекинг, является каталитическим процессом, протекающим при высоких температурах (до 540°С). Обычно его применяют к парафиновым фракциям, кипящих в диапазоне 95-105°С.

Наиболее широко для получения бензинов применяют платиновые катализаторы, нанесенные на алюминийоксидные или алюмосиликатные носители. Применяется также алюмомолибденовый катализатор (оксид молибдена на оксиде алюминия), а также парные катализаторы платина-иридий или платина-рений на оксиде алюминия.

Большинство установок риформинга – это установки с неподвижным слоем катализатора. Такой вариант риформинга называется платформингом.

В основе риформинга лежат три типа реакций:

1.  Дегидрирование шестичленных нафтенов:

С6Н12(циклогексан) = С6Н6(бензол)+ 3Н2 (55)

2.  Ароматизация (дегидроциклизация) парафинов. В этом процессе происходит отщепление водорода от насыщенных углеводородов и превращение их в ненасыщенные. При циклизации последних и продолжении дегидрирования образуются ароматические углеводороды (бензол, толуол и др.).

3.  Дегидроизомеризация пятичленных нафтенов. Происходит дегидрирование насыщенных циклических углеводородов и каталитическая изомеризация продуктов их дегидрирования в ароматические углеводороды (бензол, толуол и др.).

В таблице 7 приведены октановые числа некоторых углеводородов.

Т а б л и ц а 7

Октановое число некоторых углеводородов

Углеводород

Октановое число

Алканы

СН4 (метан)

107

С2Н6 (этан)

107

С6Н14 (гексан)

25

н-С8Н18 (нормальный октан)

Меньше 0

i- С8Н18 (изооктан)

100 (стандарт)

i- С4Н10(изобутан)

103

Алкены

С2Н2(ацетилен)

100

С3Н8(пропилен)

100

Ароматические углеводороды

С6Н6 (бензол)

113

С6Н5СН3(толуол)

110

Как можно видеть, линейные алканы имеют очень низкие октановые числа, за исключением первых газообразных гомологов. Алкены, арены и разветвленные алканы (изоалканы) имеют высокие значения октанового числа.

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5