Кроме того, используемые при разработке информационной системы модели автоматизируемого объекта, отвечающие критериям внутренней согласованности и полноты, могут в силу различных причин устареть за время разработки (например, из-за внесения изменений в законодательство, колебания курса валют и т. п.). Это относится и к функциональной модели, и к информационной модели, и к проектам интерфейса пользователя, и к пользовательской документации.
2) Возврат на более ранние стадии. Данный недостаток каскадной модели в общем-то является одним из проявлений предыдущего. Поэтапная и последовательная работа над проектом может быть следствием то го, что ошибки, допущенные на более ранних этапах, как правило, обнаруживаются только на последующих стадиях работы над проектом. Поэтому, после того как ошибки проявятся, проект возвращается на предыдущий этап, перерабатывается и снова передается на последующую стадию. Это может служить причиной срыва графика работ и усложнения взаимоотношений между группами разработчиков, выполняющих отдельные этапы работы. Самым же неприятным является то, что недоработки предыдущего уровня могут обнаруживаться не сразу на последующем уровне, а позднее (например, на стадии опытной эксплуатации могут проявиться ошибки в описании предметной области). Это означает, что часть проекта должна быть возвращена на начальный уровень работы.
Одной из причин данной ситуации является то, что в качестве экспертов, участвующих в описании предметной области, часто выступают будущие пользователи системы, которые нередко не могут четко сформулировать то, что они хотели бы получить. Кроме того, заказчики и исполнители часто неправильно понимают друг друга вследствие того, что исполнители обычно не являются специалистами в предметной области решаемой задачи, а заказчики далеки от программирования.
3) Сложность параллельного ведения работ. Отмеченные выше проблемы возникают вследствие того, что работа над проектом строится в виде цепочки последовательных шагов. Причем даже в том случае, когда разработку некоторых частей проекта (подсистем) можно вести параллельно, при использовании каскадной схемы распараллеливание работ весьма затруднительно. Сложности параллельного ведения работ связаны с необходимостью постоянного согласования различных частей проекта. Чем сильнее взаимозависимость отдельных частей проекта, тем чаще и тщательнее должна выполняться синхронизация, тем сильнее зависимы друг от друга группы разработчиков. Поэтому преимущества параллельного ведения работ просто теряются.
Отсутствие параллелизма негативно сказывается и на организации работы всего коллектива разработчиков. Работа одних групп сдерживается другими. Пока производится анализ предметной области, проектировщики, разработчики и те, кто занимается тестированием и администрированием, почти не имеют работы. Кроме того, при последовательной разработке крайне сложно внести изменения в проект после завершения этапа и передаче проекта на следующую стадию. Так, например, если после передачи проекта на следующий этап группа разработчиков нашла более эффективное решение, оно не может быть использовано. Это связано с тем, что более раннее решение уже, возможно, реализовано и связано с другими частями проекта. Поэтому исключается (или, по крайней мере, существенно затрудняется) доработка проекта после его передачи на следующий этап.
4) Информационная перенасыщенность. Проблема информационной перенасыщенности возникает вследствие сильной зависимости между различными группами разработчиков. Данная проблема заключается в том, что при внесении изменений в одну из частей проекта необходимо оповещать всех разработчиков, которые использовали или могли использовать эту часть в своей работе. Когда система состоит из большого количества взаимосвязанных подсистем, то синхронизация внутренней документации становится важной самостоятельной задачей.
Причем синхронизация документации на каждую часть системы — это не более чем процесс оповещения групп разработчиков. Самим же разработчикам необходимо ознакомиться с изменениями и оценить, не сказались ли эти изменения на уже полученных результатах. Все это может потребовать проведения повторного тестирования и даже внесения изменений в уже готовые части проекта. Причем эти изменения, в свою очередь, должны быть отражены во внутренней документации И быть разосланы другим группам разработчиков. Как следствие, объем документации по мере разработки проекта растет очень быстро, так что требуется все больше времени для составления документации и ознакомления с ней.
Следует также отметить, что, кроме изучения нового материала, не отпадает и необходимость в изучении старой информации. Это связано с тем, что вполне вероятна ситуация, когда в процессе выполнения разработки изменяется состав группы разработчиков (этот процесс носит название ротации кадров). Новым разработчикам необходима информация о том, что было сделано до них. Причем чем сложнее проект, тем больше времени требуется, чтобы ввести нового разработчика в курс дела.
5)Сложность управления проектом при использовании каскадной схемы в основном обусловлена строгой последовательностью стадий разработки и наличием сложных взаимосвязей между различными частями проекта.
Последовательность разработки проекта приводит к тому, что одни группы разработчиков должны ожидать результатов работы других команд. Поэтому требуется административное вмешательство для того, чтобы согласовать сроки работы и состав передаваемой документации.
В случае же обнаружения ошибок в выполненной работе необходим возврат к предыдущим этапам выполнения проекта. Это приводит к дополнительным сложностям в управлении проектом. Разработчики, допустившие просчет или ошибку, вынуждены прервать текущую работу (над новым проектом) и заняться исправлением ошибок. Следствием этого обычно является срыв сроков выполнения как исправляемого, так и нового проектов. Требовать же от команды разработчиков ожидания окончания следующей стадии разработки нерационально, так как приводит к существенным потерям рабочего времени.
Упростить взаимодействие между группами разработчиков и уменьшить информационную перенасыщенность документации можно, уменьшая количество связей между отдельными частями проекта. Однако это обычно весьма непросто. Далеко не каждую информационную систему можно разделить на несколько слабо связанных подсистем.
6) Высокий уровень риска. Чем сложнее проект, тем больше продолжительность каждого из этапов разработки и тем сложнее взаимосвязи между отдельными частями проекта, количество которых также увеличивается. Причем результаты разработки можно реально увидеть и оценить лишь на этапе тестирования, то есть после завершения анализа, проектирования и разработки — этапов, выполнение которых требует значительного времени и средств. Как уже было отмечено выше, запоздалая оценка создает значительные проблемы при выявлении ошибок анализа и проектирования — требуется возврат проекта на предыдущие стадии и повторение процесса разработки.
Однако возврат на предыдущие стадии может быть связан не только с ошибками, но и с изменениями, произошедшими за время выполнения разработки в предметной области или в требованиях заказчика. Причем возврат проекта вследствие этих причин на доработку не гарантирует, что предметная область снова не изменится к тому моменту, когда будет готова следующая версия проекта. Фактически это означает, что существует вероятность того, что процесс разработки «зациклится» и никогда не дойдет до сдачи в эксплуатацию. Расходы на проект будут постоянно расти, а сроки сдачи готового продукта — постоянно откладываться.
Поэтому можно утверждать, что сложные проекты, разрабатываемые по каскадной схеме, имеют повышенный уровень риска. Этот вывод подтверждается практикой: по сведениям консалтинговой компании The Standish Group, в США более 31 % проектов корпоративных информационных систем (IT-проектов) заканчивается неуспехом; почти 53 % IT-проектов завершается с перерасходом бюджета (в среднем на 189 %, то есть почти в два раза); и только 16,2 % проектов укладывается и в срок, и в бюджет.
примечание
Существует еще один серьезный недостаток, присущий каскадной модели разработки, на который также следует обратить внимание. Этот недостаток связан с конфликтом (не всегда явным) между разработчиками, участвующими в выполнении проекта. Этот конфликт обусловлен тем, что возврат части проекта на предыдущую стадию обычно сопровождается поиском причин и виновных. А так как однозначно персонифицировать ответственного за ошибки далеко не всегда возможно, то попытки поиска виноватых могут сильно усложнить отношения в коллективе. Как следствие, в рабочей группе часто ценится не тот руководитель, который имеет высокую квалификацию и больший опыт, а тот, кто умеет «отстоять» своих подчиненных, обеспечить им более удобные условия работы и т, п. В результате появляется опасность снижения и квалификации, и творческого потенциала всей команды. Соответственно, техническое руководство проектом начинает в большей степени подменяться организационным руководством, все более детальной проработкой должностных инструкций и все более формальным исполнением этих инструкций. Тот, кто не умеет организовать работу, обречен бороться за дисциплину. И здесь возникает проблема несовместимости дисциплины и творчества. Чем строже дисциплина, тем менее творческой становится атмосфера в коллективе. И такое положение вещей может привести к тому, что наиболее одаренные кадры со временем покинут коллектив.
Лекция 11
Спиральная модель жизненного цикла.
Спиральная модель, в отличие от каскадной, предполагает итерационный процесс разработки информационной системы. При этом возрастает значение начальных этапов жизненного цикла, таких как анализ и проектирование. На этих этапах проверяется и обосновывается реализуемость технических решений путем создания прототипов.
Итерации.
Каждая итерация представляет собой законченный цикл разработки, приводящий к выпуску внутренней или внешней версии изделия (или подмножества конечного продукта), которое совершенствуется от итерации к итерации, чтобы стать законченной системой. Таким образом, каждым виток спирали соответствует созданию фрагмента или версии программного изделия, на нем уточняются цели и характеристики проекта, определяется его качество, планируются работы следующего витка спирали, На каждой итерации углубляются и последовательно конкретизируются детали проекта, в результате чего выбирается обоснованный вариант, который доводится до окончательной реализации.
Использование спиральной модели позволяет осуществлять переход на следующий этап выполнения проекта, не дожидаясь полного завершения работы на текущем - недоделанную работу можно будет выполнить на следующей итерации.
Главная задача каждой итерации — как можно быстрее создать работоспособный продукт, который можно показать пользователям системы. Таким образом, существенно упрощается процесс внесения уточнений и дополнений в проект.
Преимущества спиральной модели.
Спиральный подход к разработке программного обеспечения позволяет преодолеть большинство недостатков каскадной модели и, кроме того, обеспечивает ряд дополнительных возможностей, делая процесс разработки более гибким. Рассмотрим преимущества итерационного подхода более подробно:
· итерационная разработка существенно упрощает внесение изменений в проект при изменении требований заказчика;
· при использовании спиральной модели отдельные элементы информационной системы интегрируются в единое целое постепенно. При итерационном подходе интеграция производится фактически непрерывно. Поскольку интеграция начинается с меньшего количества элементов, то возникает гораздо меньше проблем при ее проведении (по некоторым оценкам, при использовании каскадной модели разработки интеграция занимает до 40 % всех затрат в конце проекта);
· уменьшение уровня рисков. Данное преимущество является следствием предыдущего, так как риски обнаруживаются именно во время интеграции. Поэтому уровень рисков максимален в начале разработки проекта. По мере продвижения разработки ожидаемый риск уменьшается. Данное утверждение справедливо при любой модели разработки, однако при использовании спиральной модели уменьшение уровня рисков происходит с наибольшей скоростью. Это связано с тем, что при итерационном подходе интеграция выполняется уже на первой итерации и при выполнении начальных итераций выявляются многие аспекты проекта, такие как пригодность используемых инструментальных средств и ПО, квалификация разработчиков и т. п. Ниже приведены зависимости уровня рисков от времени разработки при использовании каскадного и итерационного подходов;
· итерационная разработка обеспечивает большую гибкость в управлении проектом, давая возможность внесения тактических изменений в разрабатываемое изделие. Например, можно сократить сроки разработки за счет уменьшения функциональности системы пли использовать в качестве составных частей системы продукцию сторонних фирм вместо собственных разработок.
· итерационный подход упрощает повторное использование компонентов позволяет использовать компонентный подход к программированию — более подробно об этом мы будем говорить в следующей главе). Это обусловлено тем. что гораздо проще выявить (идентифицировать) общие части проекта, когда они уже частично разработаны, чем пытаться выделить их в самом начале проекта. Анализ проекта после проведения нескольких начальных итерации позволяет выявить общие, многократно используемые компоненты, которые на последующих итерациях будут совершенствоваться;
· спиральная модель позволяет получить более надежную и устойчивую систему. Это связано с тем, что по мере развития системы ошибки и слабые места обнаруживаются и исправляются на каждой итерации. Одновременно могут корректироваться критические параметры эффективности, что при использовании каскадной модели выполняется только перед внедрением системы;
· итерационный подход позволяет совершенствовать процесс разработки — анализ, проводимый в конце каждой итерации, позволяет проводить оценку того, что должно быть изменено в организации разработки, и улучшить ее на следующей итерации.
Проблемы, возникающие при использовании спиральной модели.
Основная проблема спирального цикла — определение момента перехода на следующий этап. Для её решения необходимо ввести временные ограничения на каждый из этапов жизненного цикла. Иначе процесс разработки может прекратится в бесконечное совершенствование уже сделанного. При итерационном подходе полезно следовать принципу "лучшее — враг хорошего". Поэтому завершение итерации должно производиться строго в соответствии с планом, даже если не вся запланированная работа закончена. Планирование работ обычно проводится на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.
Методология и технология разработки информационных систем
Методология создания информационных систем заключается в организации процесса построения информационной системы и обеспечении управления этим процессом для того, чтобы гарантировать выполнение требований, как к самой системе, так и к характеристикам процесса разработки.
Основными задачами, решение которых должна обеспечивать методология создания корпоративных информационных систем (с помощью соответствующего набора инструментальных средств), являются следующие:
- обеспечение создания информационных систем, отвечающих целям и задачам предприятия и соответствующих предъявляемым к ним требованиям по автоматизации деловых процессов; гарантия создания системы с заданными параметрами в течение заданного времени в рамках оговоренного заранее бюджета; простота сопровождения, модификации и расширения системы с целью обеспечения ее соответствия изменяющимся условиям работы предприятия; обеспечение создания корпоративных информационных систем, отвечающих требованиям открытости, переносимости и масштабируемости; возможность использования в создаваемой системе разработанных ранее и применяемых на предприятии средств информационных технологий (программного обеспечения, баз данных, средств вычислительной техники, телекоммуникаций).
Методологии, технологии и инструментальные средства проектирования (CASE-средства) составляют основу проекта любой информационной системы. Методология реализуется через конкретные технологии и поддерживающие их стандарты, методики и инструментальные средства, которые обеспечивают выполнение процессов жизненного цикла информационных систем.
Основное содержание технологии проектирования составляют технологические инструкции, состоящие из описания последовательности технологических операций, условий, в зависимости от которых выполняется та или иная операция, и описаний самих операций.
Технология проектирования может быть представлена как совокупность трех составляющих:
- заданной последовательности выполнения технологических операций проектирования; критериев и правил, используемых для оценки результатов выполнения технологических операций; графических и текстовых средств (нотаций), используемых для описания проектируемой системы.
Каждая технологическая операция должна обеспечиваться следующими материальными и информационными ресурсами:
- данными, полученными на предыдущей операции (или исходными данными), представленными в стандартном виде; методическими материалами, инструкциями, нормативами и стандартами; программными и техническими средствами; исполнителями.
Результаты выполнения операции должны представляться в некотором стандартном виде, обеспечивающем их адекватное восприятие при выполнении следующей технологической операции (на которой они будут использоваться в качестве исходных данных).
Можно сформулировать следующий ряд общих требований, которым должна удовлетворять технология проектирования, разработки и сопровождения информационных систем:
- поддерживать полный жизненный цикл информационной системы; обеспечивать гарантированное достижение целей разработки системы с заданным качеством и в установленное время; обеспечивать возможность разделения крупных проектов на ряд подсистем — декомпозицию проекта на составные части, разрабатываемые группами исполнителей ограниченной численности, с последующей интеграцией составных частей;
примечание
Декомпозиция проекта позволяет повысить эффективность работ. Подсистемы, на которые разбивается проект, должны быть слабо связанны по данным и функциям. Каждая подсистема разрабатывается отдельной группой разработчиков. При этом необходимо обеспечить координацию работ и исключить дублирование результатов, получаемых каждой проектной группой.
- технология должна обеспечивать возможность ведения работ по проектированию отдельных подсистем небольшими группами (3-7 человек). Это обусловлено принципами управляемости коллектива и повышения производительности за счет минимизации числа внешних связей; обеспечивать минимальное время получения работоспособной системы;
примечание
Здесь имеется в виду не реализация информационной системы в целом, а разработка ее отдельных подсистем. Как правило, даже при наличии полностью завершенного проекта внедрение разработанной системы проводится последовательно, по отдельным подсистемам. Реализация же всей системы в сжатые сроки может потребовать привлечения большого числа разработчиков, при этом эффект может оказаться ниже, чем при реализации отдельных подсистем в более короткие сроки меньшим числом разработчиков.
- предусматривать возможность управления конфигурацией проекта, ведения версий проекта и его составляющих, возможность автоматического выпуска проектной документации и синхронизацию ее версий с версиями проекта; обеспечивать независимость выполняемых проектных решений от средств реализации системы - системы управления базами данных, операционной системы, языка и системы программирования.
Методология RAD - Rapid Application Development
На начальном этапе существования компьютерных информационных систем их разработка велась на традиционных языках программирования. Однако по мере возрастания сложности разрабатываемых систем и увеличения запросов пользователей (чему в значительной степени способствовал прогресс в области вычислительной техники, а также появление удобного графического интерфейса пользователя в системном программном обеспечении) потребовались новые средства, обеспечивающие значительное сокращение сроков разработки. Это послужило предпосылкой к созданию целого направления в области программного обеспечения - инструментальных средств для быстрой разработки приложений. Развитие этого направления привело к появлению на рынке программного обеспечения средств автоматизации практически всех этапов жизненного цикла информационных систем.
Лекция 12
Основные особенности методологии RAD
Методология разработки информационных систем, основанная на использовании средств быстрой разработки приложений, получила в последнее время широкое распространение и приобрела название методологии быстрой разработки приложений - RAD (Rapid Application Development). Данная методология охватывает все этапы жизненного цикла современных информационных систем. RAD - это комплекс специальных инструментальных средств быстрой разработки прикладных информационных систем, позволяющих оперировать с определенным набором графических объектов, функционально отображающих отдельные информационные компоненты приложений.
Под методологией быстрой разработки приложений обычно понимается процесс разработки информационных систем, основанный на трех основных элементах:
- небольшой команде программистов (обычно от 2 до 10 человек); тщательно проработанный производственный график работ, рассчитанный на сравнительно короткий срок разработки (от 2 до б мес.); итерационная модель разработки, основанная на тесном взаимодействии с заказчиком - по мере выполнения проекта разработчики уточняют и реализуют в продукте требования, выдвигаемые заказчиком.
При использовании методологии RAD большое значение имеют опыт и профессионализм разработчиков. Группа разработчиков должна состоять из профессионалов, имеющих опыт в анализе, проектировании, программировании и тестировании программного обеспечения.
Основные принципы методологии RAD можно свести к следующему:
- используется итерационная (спиральная) модель разработки; полное завершение работ на каждом из этапов жизненного цикла не обязательно; в процессе разработки информационной системы необходимо тесное взаимодействие с заказчиком и будущими пользователями; необходимо применение CASE-средств и средств быстрой разработки приложений; необходимо применение средств управления конфигурацией, облегчающих внесение изменений в проект и сопровождение готовой системы; необходимо использование прототипов, позволяющее полнее выяснить и реализовать потребности конечного пользователя; тестирование и развитие проекта осуществляются одновременно с разработкой; разработка ведется немногочисленной и хорошо управляемой командой профессионалов; необходимы грамотное руководство разработкой системы, четкое планирование и контроль выполнения работ.
Объектно-ориентированный подход
Средства RAD дали возможность реализовывать совершенно иную, по сравнению с традиционной, технологию создания приложений: информационные объекты формируются как некие действующие модели (прототипы), чье функционирование согласовывается с пользователем, а затем разработчик может переходить непосредственно к формированию законченных приложений, не теряя из виду общей картины проектируемой системы.
Возможность использования подобного подхода в значительной степени является результатом применения принципов объектно-ориентированного проектирования. Применение объектно-ориентированных методов позволяет преодолеть одну из главных трудностей, возникающих при разработке сложных систем — колоссальный разрыв между реальным миром (предметной областью описываемой проблемы) и имитирующей средой.
Использование объектно-ориентированных методов позволяет создать описание (модель) предметной области в виде совокупности объектов — сущностей, объединяющих данные и методы обработки этих данных (процедуры). Каждый объект обладает своим собственным поведением и моделирует некоторый объект реального мира. С этой точки зрения объект является вполне осязаемой вещью, которая демонстрирует определенное поведение.
В объектном подходе акцент переносится на конкретные характеристики физической или абстрактной системы, являющейся предметом программного моделирования. Объекты обладают целостностью, которая не может быть нарушена. Таким образом, свойства, характеризующие объект и его поведение, остаются неизменными. Объект может только менять состояние, управляться или становиться в определенное отношение к другим объектам.
Широкую известность объектно-ориентированное программирование получило с появлением визуальных средств проектирования, когда было обеспечено слияние (инкапсуляция) данных с процедурами, описывающими поведение реальных объектов, в объекты программ, которые могут быть отображены определенным образом в графической пользовательской среде. Это позволило приступить к созданию программных систем, максимально похожих на реальные, и добиваться наивысшего уровня абстракции. В свою очередь, объектно-ориентированное программирование позволяет создавать более надежные коды, так как у объектов программ существует точно определенный и жестко контролируемый интерфейс.
При разработке приложений с помощью инструментов RAD используется множество готовых объектов, сохраняемых в общедоступном хранилище. Однако обеспечивается и возможность разработки новых объектов. При этом новые объекты могут разрабатываться как на основе существующих, так и «с нуля». Инструментальные средства RAD обладают удобным графическим интерфейсом пользователя и позволяют на основе стандартных объектов формулировать простые приложения без написания кода программы. Это является большим преимуществом RAD, так как в значительной степени сокращает рутинную работу по разработке интерфейсов пользователя (при использовании обычных средств разработка интерфейсов представляет собой достаточно трудоемкую задачу, отнимающую много времени). Высокая скорость разработки интерфейсной части приложений позволяет быстро создавать прототипы и упрощает взаимодействие с конечными пользователями.
Таким образом, инструменты RAD позволяют разработчикам сконцентрировать усилия на сущности реальных деловых процессов предприятия, для которого создается информационная система. В итоге это приводит к повышению качества разрабатываемой системы.
Визуальное программирование
Применение принципов объектно-ориентированного программирования позволило создать принципиально новые средства проектирования приложений, называемые средствами визуального программирования. Визуальные инструменты RAD позволяют создавать сложные графические интерфейсы пользователя вообще без написания кода программы. При этом разработчик может на любом этапе наблюдать то, что закладывается в основу принимаемых решений. Визуальные средства разработки оперируют в первую очередь со стандартными интерфейсными объектами — окнами, списками, текстами, которые легко можно связать с данными из базы данных и отобразить на экране монитора. Другая группа объектов представляет собой стандартные элементы управления — кнопки, переключатели, флажки, меню и т. п., с помощью которых осуществляется управление отображаемыми данными. Все эти объекты могут быть стандартным образом описаны средствами языка, а сами описания сохранены для дальнейшего повторного использования.
В настоящее время существует довольно много различных визуальных средств разработки приложений. Но все они могут быть разделены на две группы — универсальные и специализированные.
Среди универсальных систем визуального программирования сейчас наиболее распространены такие, как Borland Delphi и Visual Basic. Универсальными мы их называем потому, что они не ориентированы на разработку только приложений баз данных— с их помощью могут быть разработаны приложения почти любого типа, в том числе и информационные приложения. Причем программы, разрабатываемые с помощью универсальных систем, могут взаимодействовать практически с любыми системами управления базами данных. Это обеспечивается как использонанием драйверов ODBC или OLE DB, так и применением специализированных средств (компонентов).
Специализированные средства разработки ориентированы только на создание приложений баз данных. Причем, как правило, они привязаны к вполне определенным системам управления балами данных. В качестве примера таких систем можно привести Power Builder фирмы Sybase (естественно, предназначенный для работы с СУБД Sybase Anywhere Server) и Visual FoxPro фирмы Microsoft. Поскольку задачи создания прототипов и разработки пользовательского интерфейса, по существу, слились, программист получил непрерывную обратную связь с конечными пользователями, которые могут не только наблюдать за созданием приложения, но и активно участвовать в нем, корректировать результаты и свои требования. Это также способствует сокращению сроков разработки и является важным психологическим аспектом, который привлекает к RAD все большее число пользователей.
Визуальные инструменты RAD позволяют максимально сблизить этапы создания информационных систем: анализ исходных условий, проектирование системы, разработка прототипов и окончательное формирование приложений становятся сходными, так как на каждом этапе разработчики оперируют визуальными объектами.
Событийное программирование
Логика приложения, построенного с помощью RAD, является событийно-ориентированной. Это означает следующее: каждый объект, входящий в состав приложения, может генерировать события и реагировать на события, генерируемые другими объектами. Примерами событий могут быть: открытие и закрытие окон, нажатие кнопки, нажатие клавиши клавиатуры, движение мыши, изменение данных в базе данных и т. п.
Разработчик реализует логику приложения путем определения обработчика каждого события — процедуры, выполняемой объектом при наступлении соответствующий события. Например, обработчик события «нажатие кнопки» может открыть диалоговое окно. Таким образом, управление объектами осуществляется с помощью событий.
Обработчики событий, связанных с управлением базой данных (DELETE, INSERT, UPD ATE), могут реализовываться в виде триггеров на клиентском или серверном узле. Такие обработчики позволяют обеспечить ссылочную целостность базы данных при операциях удаления, вставки и обновления, а также автоматическую генерацию первичных ключей.
Лекция 13
Профили открытых информационных систем
Создание, сопровождение и развитие современных сложных информационных систем базируется на методологии построения таких систем как открытых. Открытые информационные системы создаются в процессе информатизации всех основных сфер современного общества: органов государственного управления, финансово-кредитной сферы, информационного обслуживания предпринимательской деятельности, производственной сферы, науки, образования. Развитие и использование открытых информационных систем неразрывно связаны с применением стандартов на основе методологии функциональной стандартизации информационных технологий.
Понятие профиля информационной системы
При создании и развитии сложных, распределенных, тиражируемых информационных систем требуется гибкое формирование и применение гармонизированных совокупностей базовых стандартов и нормативных документов разного уровня, выделение в них требований и рекомендаций, необходимых для реализации заданных функций системы. Для унификации и регламентирования такие совокупности базовых стандартов должны адаптироваться и конкретизироваться применительно к определенным классам проектов, функций, процессов и компонентов системы. В связи с этим выделилось и сформировалось понятие профиля информационной системы как основного инструмента функциональной стандартизации.
Профиль - это совокупность нескольких (или подмножество одного) базовых стандартов с четко определенными и гармонизированными подмножествами обязательных и факультативных возможностей, предназначенная для реализации заданной функции или группы функций.
Профиль формируется исходя из функциональных характеристик объекта стандартизации, В профиле выделяются и устанавливаются допустимые возможности и значения параметров каждого базового стандарта и/или нормативного документа, входящего в профиль.
Профиль не должен противоречить использованным в нем базовым стандартам и нормативным документам. Он должен применять выбранные из альтернативных вариантов необязательные возможности и значения параметров в пределах допустимых.
На базе одной совокупности базовых стандартов могут формироваться и утверждаться различные профили для разных проектов информационных систем. Ограничения базовых документов профиля и их согласованность, проведенная разработчиками профиля, должны обеспечивать качество, совместимость и корректное взаимодействие отдельных компонентов системы, соответствующих профилю, в заданной области его применения.
Базовые стандарты и профили в зависимости от проблемно-ориентированной области применения информационных систем могут использоваться как непосредственные директивные, руководящие или рекомендательные документы, а также как нормативная база, необходимая при выборе или разработке средств автоматизации технологических этапов или процессов создания, сопровождения и развития информационных систем. Обычно рассматривают две группы профилей:
· регламентирующие архитектуру и структуру информационной системы;
· регламентирующие процессы проектирования, разработки, применения, сопровождения и развития системы.
В зависимости от области применения профили могут иметь разные категории и соответственно разные статусы утверждения:
· профили конкретной информационной системы, определяющие стандартизованные проектные решения в пределах данного проекта;
· профили информационной системы, предназначенные для решения некоторого класса прикладных задач.
Профили информационных систем унифицируют и регламентируют только часть требований характеристик, показателей качества объектов и процессов, выделенных и формализованных на базе стандартов и нормативных документов. Другая часть функциональных и технических характеристик системы определяется заказчиками и разработчиками творчески, без учета положений нормативных документов.
Принципы формирования профиля информационной системы
Использование профилей информационных систем призвано решить следующие задачи:
· снижение трудоемкости проектов;
· повышение качества компонентов информационной системы;
· обеспечение расширяемости и масштабируемости разрабатываемых систем;
· обеспечение возможности функциональной интеграции в информационную систему задач, которые раньше решались раздельно;
· обеспечение переносимости прикладного программного обеспечения. В зависимости от того, какие из указанных задач являются наиболее приоритетными, производится выбор стандартов и документов для формирования профиля.
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 |



