В связи с тем, что в районе сооружаемого участка магистрального газопровода зимний период, с понижением температуры до отметки – 45-50ºС, длится большую часть года, а также на всём протяжении сооружаемого участка газопровода почва представляет собой вечномёрзлые грунты – считаю целесообразным очистку полости газопровода произвести методом продувки газом с пропуском трёх очистных поршней типа ОП и пневматическое испытание природным газом на прочность и проверку на герметичность.
2 СПЕЦИАЛЬНАЯ ЧАСТЬ
("6") 2.1Механический расчет магистрального газопровода
Цель расчета: Определить номинальную толщину стенки газопровода и подобрать трубу.
Исходные данные:
Диаметр газопровода, Dм, мм – 1420
Рабочее проектное давление Р, МПа – 7,5
Категория участка газопровода – ΙΙΙ
Температурный перепад Δt, ºC – 45
Задаем ориентировочно характерными для данного диаметра труб (марок стали), выпускаемых промышленностью значений предела, прочности δвр =588 МПа и определяем нормативные сопротивления растяжению (сжатию) металла труб и сварных соединений R1, Мпа:
(2.1)

Где
- δвр = 588 МПа;
m – коэффициент условий работы, принимается в зависимости от категории участка газопровода, m= 0,9;
К1 – коэффициент надежности по материалу, зависит от способа изготовления трубы, К1 = 1,34;
Кн – коэффициент надежности по назначению газопровода, зависит от давления, Кн = 1,15.
Определяем толщину стенки газопровода δ, см.
(2.2)

Где n – коэффициент надежности по нагрузке - внутреннему рабочему давлению в трубопроводе – принимается n=1,1;
- проектное рабочее давление
=7,5 МПа
- наружный диаметр газопровода,
= 142 см.
("7") По полученному результату выбираем толщину стенки трубы по сортаменту и проверяем выбранную трубу на наличие продольных осевых сжимающих напряжений, МПа, определяемых от расчетных нагрузок и воздействий с учетом упругости работы металла труб. Ориентировочно выбираем трубу Харцизского трубного завода ТУ х 18,7мм.
3) Определяем внутренний диаметр трубы Dвн, мм:
(2.3)
Где Dн - наружный диаметр трубы;
δн – выбранная по сортаменту толщина стенки трубы;
Dвн = (1420 -2· 18,7) = 1382,6мм.
Проверяем выбранную трубу на наличие продольных осевых напряжений, МПа:
(2.4)
Где α – коэффициент линейного расширения металла трубы, α = 1,2 ·
;
E – переменный параметр упругости (модуль Юнга), E= ![]()
Δt – расчетный температурный перепад, ºC ;
μ- коэффициент поперечной упругой деформации: Пуассона, в стадии работы металла, μ= 0,3;
δн – толщина стенки выбранной трубы, см;
Dвн - внутренний диаметр трубы, см.

(2.5)
Где
- продольное осевое сжимающее напряжение берется по модулю из предыдущего расчета; МПа;
R1 - нормативные сопротивления растяжению (сжатию) металла труб и сварных соединений, МПа.

("8")
6) Подставив полученные значения поправочного коэффициента, определим стенку трубы с учетом продольных осевых напряжений, см:
(2.6)

(2.7)
1,01<1,87>0,4
Вывод: По результатам расчета возникающие в трубе продольные напряжения не опасны и выбранная нами труба полностью соответствует заданным параметрам.
2.2 Расчет необходимого количества материалов для сооружения участка газопровода
Цель расчета: Подобрать электроды и рассчитать необходимое их количество для сварки участка магистрального газопровода.
Исходные данные:
Труба Харцизского трубного завода
с пределом прочности 588 МПа (60 кгс/мм²)
Труба диаметром – 1420 мм
Толщина стенки – 18,7 мм
Электроды с основным видом покрытия.
1) Корневой слой шва выполняется электродами 3мм, а заполняющие слои шва - облицовочный и подварочный – электродами 4 мм. Исходя из толщины стенки трубы (18мм), количество заполняющих слоев будет равно 4. Корневой слой шва выполняем электродами Шварц 3К диаметром 3мм, а заполнение, облицовку и подварку электродами Кессель 5520 диаметром 4мм.
2) По диаметру электрода и допустимой плотности тока рассчитываем сварочный ток для сварки корневого и других слоев шва:
Для корневого слоя электродами диаметром 3 мм:
(2.8)

("9") Где dэ - диаметр электрода, мм;
j – допустимая плотность тока для электрода Д=3 мм, А/мм, j=15А/мм²
Для заполняющих, подварочного и облицовочного слоев шва электродами Д=4мм:
(2.9)

Где dэ - диаметр электрода, мм;
j – допустимая плотность тока для электрода Д=4 мм, А/мм², j=12А/мм²
Принимаем:
Величина зазора между кромками труб - а = 3мм.
Высота притупления - hк = 3мм
Ширина подварочного шва - Cпод = 10мм
Высота подварочного слоя шва - hпод = 2мм
Высота облицовочного слоя шва - hо = 2мм.
Отсюда площадь подварочного слоя шва:
(2.10)

Где Спод – ширина подварочного слоя шва, см;
hпод – высота подварочного слоя шва, см.
Определяем толщину каждого из заполняющих слоев шва:
(2.11)
("10") 
Где
- толщина стенки трубы, мм;
hк - высота притупления, мм;
n - количество заполняющих слоев шва.
4) Толщина всех заполняющих слоев шва будет:
(2.12)

Где n – количество заполняющих слоев шва:
- толщина одного заполняющего слоя шва, см.
(2.13)

Где a- величина зазора между кромками труб, см.
Так как угол разделки кромок составляет 30º, ширина внешнего заполняющего слоя будет:
(2.14)
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 |



