Время истечения этилена при имевших место авариях за анализируемый период времени было равно 4,5, 5 и 5,5 мин. Тогда общее время существования взрывоопасного облака, занимающего 5 % объема помещения и представляющего опасность при взрыве для целостности строительных конструкций и жизни людей с учетом работы аварийной вентиляции будет равно

Откуда вероятность появления в объеме помещения, достаточного для образования горючей смеси количества этилена, равна

Учитывая, что в объеме помещения постоянно имеется окислитель, получим

Тогда вероятность образования горючей смеси этилена с воздухом в объеме помещения будет равна

Основными источниками зажигания взрывоопасного этиленовоздушного облака в помещении могут быть электроприборы (в случае их несоответствия категории и группе взрывоопасной среды), открытый огонь (при проведении огневых работ), искры от удара (при различных ремонтных работах) и разряд атмосферного электричества.

Пожарно-техническим обследованием отделения компрессии установлено, что пять электросветильников марки ВЗГ в разное время в течение 120, 100, 80, 126 и 135 ч эксплуатировались с нарушением щелевой защиты.

Вероятность нахождения электросветильников в неисправном состоянии равна

Так как температура колбы электролампочки мощностью 150 Вт равна 350 °С, а температура самовоспламенения этилена 540 °С, следовательно, нагретая колба не может быть источником зажигания этиленовоздушной смеси.

Установлено, что за анализируемый период времени в помещении 6 раз проводились газосварочные работы по 6, 8, 10, 4, 3 и 5 ч каждая. Поэтому вероятность появления в помещении открытого огня будет равна

Так как температура пламени газовой горелки и время ее действия значительно превышают температуру воспламенения и время, необходимое для зажигания этиленовоздушной смеси, получаем, что

Ремонтные работы с применением искроопасного инструмента в помещении за анализируемый период времени не проводились.

Вычисляем вероятность появления в помещении разряда атмосферного электричества.

Помещение расположено в местности с пpoдoлжитeлънocтью грозовой деятельности 50 с×год-1, поэтому п=6 км-2×год-1. Отсюда, в соответствии с формулой (5) приложения 3 число ударов молнии в здание равно

Тогда вероятность прямого удара молнии будет равна

Вычисляем вероятность отказа исправной молниезащиты типа Б здания компрессорной по формуле (52) приложения 3

Таким образом, вероятность поражения здания молнией равна

Пожарно-техническим обследованием установлено, что защитное заземление, имеющееся в здании, находится в исправном состоянии, поэтому

Тогда

Учитывая параметры молнии получим

Откуда

Таким образом, вероятность взрыва этиленовоздушной смеси в объеме помещения будет равна:

Рассчитаем вероятность возникновения пожара в помещении компрессорной. Наблюдение за объектом позволило установить, что примерно 255 ч×год-1 в помещении компрессорной, в нарушение правил пожарной безопасности, хранились разнообразные горючие материалы (ветошь, деревянные конструкции, древесные отходы и т. п.), не предусмотренные технологическим регламентом. Поэтому вероятность появления в помещении горючих веществ равна

Откуда вероятность образования в цехе пожароопасной среды равна

Из зафиксированных тепловых источников, которые могут появиться в цехе, источником зажигания для твердых горючих веществ является только открытый огонь и разряды атмосферного электричества. Поэтому вероятность возникновения в отделении компрессии пожара равна

Таким образом, вероятность того, что в отделении компрессии произойдет взрыв либо в самом компрессоре, либо в объеме цеха составит значение

.

Вероятность того, что в компрессорной возникнет пожар или взрыв, равна:

1.3. Заключение

Вероятность возникновения в компрессорной взрыва равна 2,7×10-7 в год, что соответствует одному взрыву в год в 3703704 аналогичных зданиях, а вероятность возникновения в нем или взрыва, или пожара равна 1,9×10-4 в год, т. е. один пожар или взрыв в год в 5263 аналогичных помещениях.

2. Рассчитать вероятность возникновения пожара в резервуаре РВС 20000 НПС «торголи»

2.1. Данные для расчета

В качестве пожароопасного объекта взят резервуар с нефтью объемом 20000 м3. Расчет ведется для нормальной эксплуатации технически исправного резервуара.

Средняя рабочая температура нефти Т=311 К. Нижний и верхний температурные пределы воспламенения нефти равны: Тн. п.в=249 К, Тв. п.в=265 К. Количество оборотов резервуара в год Поб=24 год-1. Время существования горючей среды в резервуаре при откачке за один оборот резервуара tотк=10 ч (исключая длительный простой). Радиус резервуара РВС=2000 R=22,81 м. Высота резервуара Hр==11,9 м. Число ударов молний п=6 км-2×год-1. На резервуаре имеется молниезащита типа Б, поэтому bб=0,95.

Число искроопасных операций при ручном измерении уровня Nз. у=1100 год-1. Вероятность штиля (скорость ветра и£1 м×с-1), Qш (u£1)=0,12. Число включений электрозадвижек Nэ. з=40×год-1. Число искроопасных опера ций при проведении техобслуживания резервуара NТ. О=24 год-1. Нижний и верхний концентрационные пределы воспламенения нефтяных паров Си. к.п. в=0,02 % (по объему), Си. к.п. в=0,1 % (по объему). Производительность, операции наполнения g=0,56 м3×c-1. Рабочая концентрация паров в резервуаре С=0,4 % (по объему). Продолжительность выброса богатой смеси Тбог==5 ч.

2.2. Расчет

Так как на нефтепроводах средняя рабочая температура жидкости (нефти) выше среднемесячной температуры воздуха, то за расчетную температуру поверхностного слоя нефти принимаем .

Из условия задачи видно, что >в. к.п. в, поэтому при неподвижном уровне нефти вероятность образования горючей cмеси внутри резервуара равна нулю QВН (ГС)=0, а при откачке нефти равна

.

Таким образом вероятность образования горючей среды внутри резервуара в течение года будет равна

.

Вычислим число попадании молнии в резервуар то формуле (51) приложения 3

.

Тогда вероятность прямого удара молнии в резервуар в течение года, вычисленная по формуле (49) приложения 3, равна

.

Вычислим вероятность отказа молниезащиты в течение года при исправности молниеотвода по формуле (52) приложения 3.

Таким образом, вероятность поражения молнией резервуара, в соответствии с формулой (48) приложения 3, равна

Обследованием установлено, что имеющееся на резервуаре защитное заземление находится в исправном состоянии, поэтому вероятность вторичного воздействия молнии на резервуар и заноса в него высокого потенциала равна нулю

Появление фрикционных искр в резервуаре возможно только при проведении искроопасных ручных операций при измерении уровня и отборе проб. Поэтому вероятность Qр(ТИ3) в соответствии с формулами (49 и 55) приложения 3 равна

В этой формуле Q(ОП) = 1,52×10-3 - вероятность ошибки оператора, выполняющего операции измерения уровня.

Таким образом, вероятность появления в резервуаре какого-либо теплового источника в соответствии с приложением 3 равна

Полагая, что энергия и время существования этих источников достаточны для воспламенения горючей среды, т. е Qр(B) = l из приложения 3 получим Qр (ИЗ/ГС) = 5,4×10-3.

Тогда вероятность возникновения пожара внутри резервуара в соответствии с формулой (38) приложения 3, равна

Из условия задачи следует, что рабочая концентрация паров в резервуаре выше верхнего концентрационного предела воспламенения, т. е, в резервуаре при неподвижном слое нефти находится негорючая среда. При наполнении резервуара нефтью в его окрестности образуется горючая среда, вероятность выброса которой можно вычислить по формуле (42) приложения 3

Во время тихой погоды (скорость ветра меньше 1 м×с-1) около резервуара образуется взрывоопасная зона, вероятность появления которой равна

Диаметр этой взрывоопасной зоны равен

Определим число ударов молнии во взрывоопасную зону

Тогда вероятность прямого удара молнии в данную зону равна

Так как вероятность отказа молниезащиты Qр(t1) = 5×10-2, то вероятность поражения молнией взрывоопасной зоны равна

Откуда Qв. з(ТИ1)=7×10-3.

Вероятность появления около резервуара фрикционных искр равна

Наряду с фрикционными искрами в окрестностях резервуара возможно появление электрических искр замыкания и размыкания контактов электрозадвижек. Учитывая соответствие пополнения электрозадвижек категории и группе взрывоопасной смеси, вероятность появления электрических искр вычислим по формулам (49 и 54) приложения 3.

Таким образом, вероятность появления около резервуара какого-либо теплового источника в соответствии с приложением 3 составит значение

Полагая, что энергия и время существования этих источников достаточны для зажигания горючей среды, из формулы (49) приложения 3 получим при Qв=1

Тогда вероятность возникновения взрыва в окрестностях резервуара в соответствии с формулой (39) приложения 3 равна

Откуда вероятность возникновения в зоне резервуара либо пожара, либо взрыва составит значение

2.3. Заключение

Вероятность возникновения в зоне резервуара пожара или взрыва составляет 2,0×10-4, что соответствует одному пожару или взрыву в год в массиве из 3448 резервуаров, работающих в условиях, аналогичных расчетному.

3. Определить вероятность воздействия ОФП на людей при пожаре в проектируемой 15-этажной гостинице при различных вариантах системы противопожарной защиты.

3.1. Данные для расчета

В здании предполагается устройство вентиляционной системы противодымной защиты (ПДЗ) с вероятностью эффективного срабатывания R1=0,95 и системы оповещения людей о пожаре(ОЛП) с вероятностью эффективного срабатывания R2=0,95. Продолжительность пребывания отдельного человека в объекте в среднем 18 ч×сут-1 независимо от времени года. Статистическая вероятность возникновения пожара в аналогичных объектах в год равна 4×10-4. В качестве расчетной ситуации принимаем случай возникновения пожара на первом этаже. Этаж здания рассматриваем как одно помещение. Ширина поэтажного коридора 1,5 м, расстояние от наиболее удаленного помещения этажа до выхода в лестничную клетку 40 м, через один выход эвакуируются 50 человек, ширина выхода 1,21 м. Нормативную вероятность Qнв принимаем равной 1×10-6, вероятность Рдв, равной 1×10-3.

3.2. Расчет

Оценку уровня безопасности определяем для людей, находящихся на 15-м этаже гостиницы (наиболее удаленном от выхода в безопасную зону) при наличии систем ПДЗ и ОЛП. Так как здание оборудовано вентиляционной системой ПДЗ, его лестничные клетки считаем незадымляемыми. Вероятность Qв вычисляем по формуле (33) приложения 2

.

Учитывая, что отдельный человек находится в гостинице 18 ч, то вероятность его присутствия в здании при пожаре принимаем равной отношению . С учетом этого окончательно значение будет равно 0,75×10-6, что меньше Qнв. Условие формулы (2) приложения 2 выполняется, поэтому безопасность людей в здании на случай возникновения пожара обеспечена. Рассмотрим вариант компоновки противопожарной защиты без системы оповещения. При этом время блокирования эвакуационных путей tбл на этаже пожара принимаем равным 1 мин в соответствии с требованиями строительных норм и правил проектирования зданий и сооружений. Расчетное время эвакуации tр, определенное в соответствии с теми же нормами, равно 0,47 мин. Время начала эвакуации tн. э, принимаем равным 2 мин. Вероятность эвакуации Pэ. п для этажа пожара вычисляем по формуле (5) приложения 2.

.

Вероятность Qв вычисляем по формуле (3) приложения 2.

Поскольку Qв>Qнв, то условие безопасности для людей по формуле (2) приложения 2 на этаже пожара не отвечает требуемому, - и, следовательно, в рассматриваемом объекте не выполняется при отсутствии системы оповещения.

4. Определить категорию и класс взрывоопасной зоны помещения, в котором размещается технологический процесс с использованием ацетона.

4.1. Данные для расчета

Ацетон находится в аппарате с максимальным объемом заполнения Vаи, равным 0,07 м3, и в центре помещения над уровнем пола. Длина L1 напорного и обводящего трубопроводов диаметром d 0,05. м равна соответственно 3 и 10м. Производительность q насоса 0,01 м×мин-1. Отключение насоса автоматическое. Объем Vл помещения составляет 10000 м3 (48х24х8,7). Основные строительные конструкции здания железобетонные, и предельно допустимый прирост давления для них составляет 25 кПа. Кратность А аварийной вентиляции равна 10 ч-1.

Скорость воздушного потока и в помещении при работе аварийной вентиляции равна 1,0 м×с-1. Температура ацетона равна температуре воздуха и составляет 293 К. Плотность r ацетона 792 кг×м-3.

4.2. Расчет

Объем ацетона м3, вышедшего из трубопроводов, составляет

где t - время автоматического отключения насоса, равное 2 мин.

Объем поступившего ацетона, м3, в помещение

.

Площадь разлива ацетона принимаем равной 116 м2.

Скорость испарения (Wисп), кг×с-1×м, равна

Масса паров ацетона (Мп), кг, образующихся при аварийном разливе равна

Следовательно, принимаем, что весь разлившийся ацетон, кг, за время аварийной ситуации, равное 3600 с, испарится в объем помещения, т. е.

Стехиометрическая концентрация паров ацетона при b=4 равна

Концентрация насыщенных паров получается равной

Отношение Сн/(1,9×Сст)>1, следовательно, принимаем Z=0,3.

Свободный объем помещения, м3

Время испарения, ч, составит

.

Коэффициент получается равным

Максимально возможная масса ацетона, кг

Поскольку mп(91,9 кг)<mmax(249,8 кг), то помещение в целом относится к невзрывопожароопасным.

Расстояния Xн. к.п. в, Yн. к.п. в и Zн. к.п. в составляют при уровне значимости Q=5×10-2

где

4.3. Заключение

Таким образом, взрывобезопасные расстояния составляют соответственно Rб>7,85 м и Zб>3 м.

Взрывоопасная зона с размерами Rб£7,85 м и Zб£3 м относится к классу В-1а. Схематически взрывоопасная зона изображена на черт. 9.

1 - помещение; 2 - аппарат; 3 - взрывоопасная зона

Черт. 9

5. Определить категорию производства, в котором находится участок обработки зерна и циклон для определения зерновой пыли в системе вентиляции.

5.1. Данные для расчета

Масса зерновой пыли, скапливающейся в циклоне mа, составляет 20000 г. Производительность циклона q по пыли составляет 100 г×мин-1. Время t автоматического отключения циклона не более 2 мин. Свободный объем помещения Vсв, равен 10000 м3. Остальные исходные данные: mx=500 г; b1=1; п=14; Kу=0,6; Кл=1; Кв. з=1; Q=16700 кДж×кг-1; То=300 К; Ср=1,0 кДж×кг-1; То=300 К; Cр=l,0 кДж×кг-1; rв=1,29 кг×м-3; Рдоп=25 кПа; Ро=101 кПа; Z=1,0.

5.2. Расчет

Масса отложившейся пыли к моменту очередной уборки г, составит

Расчетная масса пыли, г, участвующей в образовании взрывоопасной смеси, равна

Максимально возможную массу горючей пыли, кг, вычисляем по формуле

5.3. Заключение

Значение mр не превышает mmax, следовательно, помещение не относится к взрывопожароопасным.

6. Рассчитать вероятность возникновения пожара от емкостного пускорегулирующего аппарата (ПРА) для люминесцентных ламп на W=40 Вт и U=220 В.

6.1. Данные для расчета приведены в табл. 13.

В результате испытаний получено:

Таблица 13

Температура оболочки в наиболее нагретом месте при работе в аномальных режимах, К

Параметр

Длительный пусковой режим

Режим с короткозамкнутым конденсатором

Длительный пусковой режим с короткозамкнутым конденсатором

Т

375

380

430

s

6,80

5,16

7,38

6.2. Расчет

Расчет возникновения пожара от ПРА ведем по приложению 5, ПРА является составной частью изделия с наличием вокруг него горючего материала (компаунд, клеммная колодка); произведение вероятностей Q(ПРQ(НЗ) обозначим через Q(аi); тогда из приложения 5 можно записать

где Qа - нормативная вероятность возникновения пожара при воспламенении аппарата, равная 10-6;

Q(B) - вероятность воспламенения аппарата или выброса из него пламени при температуре поверхности ПРА (в наиболее нагретом месте), равной или превышающей критическую;

Q(аi) - вероятность работы аппарата в i-м (пожароопасном) режиме;

Qi(Ti) - вероятность достижения поверхностью аппарата (в наиболее нагретом месте) критической (пожароопасной) температуры, которая равна температуре воспламенения (самовоспламенения) изоляционного материала;

k - число пожароопасных аномальных режимов работы, характерное для конкретного исполнения ПРА.

Для оценки пожарной опасности проводим испытание на десяти образцах ПРА. За температуру в наиболее нагретом месте принимаем среднее арифметическое значение температур в испытаниях

Дополнительно определяет среднее квадратическое отклонение

Вероятность (Q(Ti)) вычисляем по формуле (156) приложения 5

где Qi - безразмерный параметр, значение которого выбирается по табличным данным, в зависимости от безразмерного параметра ai, в распределении Стьюдента.

Вычисляем (ai) по формуле

где Tк - критическая температура.

Значение (Тк) применительно для ПРА вычисляем по формуле

где Tдj, Tвj - температура ; j-го аппарата (в наиболее нагретом месте), соответственно, при появлении первого дыма и при «выходе» аппарата из строя (прекращении тока в цепи).

Значение Q(B) вычисляем по формуле (155) приложения 5 при п=10.

Значение критической температуры (Tк) составило 442,1 К, при этом из десяти испытуемых аппаратов у двух был зафиксирован выброс пламени (m=1 Q(B)=0,36).

Результаты расчета указаны в табл. 14.

Таблица 14

Параметр

Длительный пусковой режим (i=1)

Режим с короткозамкнутым конденсатором (i=2)

Длительный пусковой режим с короткозамкнутым конденсатором (i=3)

0,06

0,1

0,006

30,9

37,8

4,967

1

1

0,99967

0

0

0,00033

6.3. Заключение

Таким образом, расчетная вероятность возникновения пожара от ПРА равна Qп=l (0,06×0+0,l×0+0,006×0,00033)×0,36=7,1×10-7, что меньше 1×10-6,. т. е. ПРА пожаробезопасен.

ПРИЛОЖЕНИЕ 7

Справочное

ТРЕБОВАНИЯ ПОЖАРНОЙ БЕЗОПАСНОСТИ ПО СОВМЕСТНОМУ ХРАНЕНИЮ ВЕЩЕСТВ И МАТЕРИАЛОВ

Требования предназначаются для всех предприятий, организаций и объектов независимо от их ведомственной подчиненности, имеющих склады или базы для хранения веществ и материалов.

Требования не распространяются на взрывчатые и радиоактивные вещества и материалы, которые должны храниться и перевозиться по специальным правилам.

Ведомственные документы, регламентирующие пожарную безопасность при хранении веществ и материалов, должны быть приведены в соответствии с настоящими Требованиями.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Возможность совместного хранения веществ и материалов определяется на основании количественного учета показателей пожарной опасности, токсичности, химической активности, а также однородности средств пожаротушения.

1.2. В зависимости от сочетания свойств, перечисленных в п. 1.1, вещества и материалы могут быть совместимыми или несовместимыми друг с другом при хранении.

1.3. Несовместимыми называются такие вещества и материалы, которые при хранении совместно (без учета защитных свойств тары или упаковки);

увеличивают пожарную опасность каждого из рассматриваемых материалов и веществ в отдельности;

вызывают дополнительные трудности при тушении пожара;

усугубляют экологическую обстановку при пожаре (по сравнению с пожаром отдельных веществ и материалов, взятых в соответствующем количестве);

вступают в реакцию взаимодействия друг с другом с образованием опасных веществ.

1.4. По потенциальной опасности вызывать пожар, усиливать опасные факторы пожара, отравлять среду обитания (воздух, воду, почву, флору, фауну и т. д.), воздействовать на человека через кожу, слизистые оболочки дыхательных путей путем непосредственного контакта или на расстоянии как при нормальных условиях, так и при пожаре, вещества и материалы делятся на разряды:

безопасные;

малоопасные;

опасные;

особоопасные.

В зависимости от разряда вещества и материала назначаются условия его хранения (см. п. 1.5-1.9).

1.5. К безопасным относят негорючие вещества и материалы в негорючей упаковке, которые в условиях пожара не выделяют опасных (горючих, ядовитых, едких) продуктов разложения или окисления, не образуют взрывчатых или пожароопасных, ядовитых, едких, экзотермических смесей с другими веществами.

Безопасные вещества и материалы следует хранить в помещениях или на площадках любого типа (если это не противоречит техническим условиям на вещество) .

1.6. К малоопасным относят такие горючие и трудногорючие вещества и материалы, которые не относятся к безопасным (п. 1.5) и на которые не распространяются требования ГОСТ 19433.

Малоопасные вещества разделяют на следующие группы:

а) жидкие вещества с температурой вспышки более 90 °С;

б) твердые вещества и материалы, воспламеняющиеся от действия газовой горелки в течение 120 с и более;

в) вещества и материалы, которые в условиях специальных испытаний способны самонагреваться до температуры ниже 150 оС за время более 24 ч при температуре окружающей среды 140 °С;

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9