Рекомендации по расчету, проектированию и устройству свайных фундаментов нового типа в г. Москве. Москомархитектура, 1997.

#M12 Рекомендации по проектированию и устройству оснований, фундаментов и подземных сооружений при реконструкции гражданских зданий и исторической застройки#S. Москомархитектура, 1998.

#M12 Временные методические рекомендации по оценке на стадии ТЭО воздействия на окружающую среду (ОВОС) подземных сооружений для строительства в г. Москве#S. Москомархитектура, 1995.

#M12 Методика инженерно-геологических изысканий в центре и серединной части г. Москвы#S. Москомархитектура, 2000.

Инструкция по проектированию и устройству свайных фундаментов зданий и сооружений в г. Москве. Москомархитектура, 2001.

#M12 Инструкция по инженерно-геологическим и геоэкологическим изысканиям в г. Москве#S. Москомархитектура, 2004.

Примечания:

1) Действуют до вступления в силу соответствующих технических регламентов

2) Носят рекомендательный характер до регистрации Минюстом России

Приложение 2

Геофизические методы исследования оснований, фундаментов зданий и подземных сооружений

В последнее десятилетие работы по реконструкции зданий и сооружений получили весьма большие масштабы. Причем особо сложными и ответственными являются работы по реконструкции и строительству объектов в историческом центре Москвы. Обусловлено это не только наличием многочисленных и особо ценных памятников истории и архитектуры, каждый из которых имеет свое уникальное конструктивное решение, но и весьма сложными и специфичными инженерно-геологическими условиями, а также исключительно высокий плотностью существующей застройки территории, значительным развитием разнообразных подземных сооружений и коммуникаций, и тем фактом, что обследуемые сооружения продолжают эксплуатироваться. Последнее обстоятельство существенно ограничивает возможности применения способов, традиционно использующихся при выполнении обследований и изысканий, а именно, таких работ как производство вскрытий, бурение скважин и т. п.

В этой связи перспективным представляется использование геофизических методов, которые могут применяться для решения широкого круга задач, начиная от изучения инженерно-геологических условий на участках строительства и реконструкции сооружения, оценки свойств грунтов под фундаментом сооружения и кончая изучением самого фундамента и стен здания.

Применение геофизических методов на участке нового строительства (реконструкции здания) или вблизи него, может дать полезную информацию о составе и свойствах грунтов, существенно уточняющую данные обследования шурфов и скважин, носящих дискретный характер.

Геофизическими методами могут быть решены следующие задачи:

1) измерение плотности и влажности грунтов в массиве и на поверхности грунта и материала;

2) определение вида насыпных грунтов и нижележащих слоев, и их толщины;

3) определение скорости и направления движения потока подземных вод;

4) обнаружение в грунте действующих и заброшенных коммуникаций и протечек из них;

5) выявление пустот в грунте, а также под асфальтовым, бетонным и другими видами покрытий, оценка возможной закарстованности участка, обнаружение заброшенных колодцев, подземных ходов;

6) обнаружение погребенных фундаментов;

7) выявление локальных участков разрыва гидроизоляции в подвальных помещениях;

8) оценка коррозионной активности грунтов;

9) оценка качества фундаментных конструкций (в сочетании с неразрушающими методами контроля и визуальным обследованием материала фундамента в шурфах и траншеях);

10) оценка потенциально опасных в геоэкологическом отношении зон и локальных участков.

К числу геофизических методов, которые могут применяться при обследовании грунтов оснований и конструкций реконструируемых зданий, относятся:

1) инженерная сейсморазведка;

2) инженерная электроразведка в различных вариантах и модификациях;

3) георадиолокационный метод ("Радар");

4) радиоизотопные методы измерения плотности и влажности;

5) радиометрический метод измерения природной радиоактивности;

6) сейсмоакустический метод оценки состояния подземных сооружений;

7) электроконтактное динамическое зондирование;

8) скважинная резистивиметрия;

9) вертикальное сейсмическое профилирование (ВСП);

10) межскважинное прозвучивание;

11) акустический эмиссионный метод (в пешеходном варианте);

12) эманационная и другие виды газовых съемок;

13) метод измерения вариаций электромагнитного поля (в пешеходном варианте);

14) вибросейсмометрия;

15) биолокационные методы.

Наиболее часто используемыми являются первые семь геофизических методов (сейсморазведка, электроразведка, радиолокация, радиоизотопные методы, радиометрический метод измерения природной радиоактивности, сейсмоакустические методы, электроконтактное динамическое зондирование). Остальные методы применяются значительно реже и, в основном, на участках с особо сложными геотехническими и инженерно-геологическими условиями, а также для решения специальных задач.

К геофизическим методам примыкает группа методов неразрушающего контроля (МНК), основанных на тех же физических принципах (за исключением механических МНК), граница между которыми довольно условна и определяется, главным образом, возможностью для МНК непосредственного доступа к контролируемому материалу и уменьшенным объемом, с которого снимается информация.

Выбор геофизических методов или их комплекса предусматривается проектом работ, в зависимости от характера решаемых задач и предварительной информации о геотехнических условиях участка.

Сейсморазведка. В настоящее время инженерная сейсморазведка является одним из основных методов изучения упругих и прочностных параметров грунтовых толщ и материалов конструкций зданий и сооружений.

Традиционно в инженерной сейсморазведке используется метод преломленных волн МПВ, который позволяет в условиях плотной городской застройки решать широкий круг задач, от определения геометрии верхних слоев геологического разреза и глубины уровня подземных вод до выявления пустот, зон трещиноватости в коренных скальных и полускальных грунтах под мощной толщей четвертичных отложений, и выполнения быстрой оценки динамических модулей упругости и других физико-механических характеристик грунтов и материалов строительных конструкций. Новым и эффективным направлением в этих исследованиях является использование при этом сейсмопрофилирования с определением перечисленных характеристик сквозь бетон (фундаментные плиты, обделки, полы подвалов).

Для оценки карстово-суффозионной опасности на территории г. Москвы используется сейсмический метод отраженных волн MOB в модификации общей глубинной точки по системе многократных перекрытий. Достоинством этого метода является возможность изучения строения геологического разреза до значительных глубин, используя для этого небольшие по площади участки на поверхности земли. Кроме того, в отличие от МПВ, условием применения которого является увеличение скорости упругих волн с глубиной MOB позволяет получать отражение от геологических границ при любом законе изменения скорости с глубиной. Для проведения этих работ применяется отечественная компьютеризованная сейсмостанция ЭХО-2, а интерпретация осуществляется с использованием пакета программ "VISTA".

Сейсмоакустика. Группа сейсмоакустических методов представляет собой комплексирование разно-частотных методов от сейсмических - 0,01-1 Кгц до акустических - 10-20 Кгц и ультразвуковых - 20-2000 Кгц. Эти методы используются для изучения строений и прочности кладки стен и фундаментов, однородности и прочности монолитных конструкций из бетона и железобетона, определение длины и сплошности свай, стен в грунте и фундаментов с использованием проходящих и отраженных волн для определения их длины, прочности бетона, наличия и мест дефектов.

Наиболее часто эти методы применяются при использовании портативных сейсмостанций "Диоген 3-12", "Диоген 12-24" и др. Обработка результатов измерений выполняется по каждой полученной сейсмограмме в отдельности с применением в необходимых случаях программ спектрального и волнового анализов (получение спектров колебаний, спектрограмм, волновых картин.

Вибросейсмометрия. Вибросейсмометрические наблюдения при инженерных изысканиях в условиях г. Москвы используются:

а) Для контроля за проведением строительных работ, связанных с забивкой свай и шпунтов в районах плотной городской застройки. С этой целью измеряются амплитудно-частотные характеристики, возникающие в грунтах на различных расстояниях от источника вибрации. Основной характеристикой при этом является скорость колебания грунтов, которая сопоставляется с 12-ти бальной шкалой ИФЗ, что позволяет подобрать такие параметры вибрационных нагрузок, при которых не происходит сверхнормативных воздействий от сваебойных работ на здания и сооружения, расположенных на контролируемой территории. Используются также нормативные значения вибропараметров (виброперемещения, виброскорости, виброускорения).

б) Для оценки допустимого уровня вибраций в жилых и общественных зданиях на основании #M12закона РФ "О санитарно-эпидемиологическом благополучии населения"#S.

в) Для оценки акустического контакта "фундамент-грунт" используются наблюдения за микросейсмическими и искусственными колебаниями на конструкциях фундамента и окружающих сооружения грунтах. Места, где амплитудно-частотные характеристики, зафиксированные на конструкциях и грунтах, резко отличаются друг от друга, соответствуют нарушению контакта "фундамент-грунт", что устанавливается прямым вскрытием фундаментов в этих местах шурфами.

Георадиолокация. Георадиолокационные исследования верхней части геологического разреза до глубины 10-20 м.

Эти исследования позволяют детально изучать неоднородности в толще грунтов по периферии и внутри контура обследуемых сооружений, что дает возможность вести поиск зон обводнения и суффозионного выноса грунтов (определять наличие труб коллекторов), а в ряде случаев использовать георадиолокационную съемку для определения толщины и армирования конструкций межэтажных перекрытий, плитных фундаментов и т. п.

Электроразведка

Из многочисленных методов электроразведки могут применяться в строительных целях такие, на результаты которых наименьшее влияние оказывают промышленные и другие электрические помехи. К этим методам относятся прежде всего электромагнитные методы зондирования и профилирования, в которых используются высокие частоты (в диапазонах от единиц килогерц до мегагерц).

К этим методам относятся:

1) Метод дипольной высокочастотной электроразведки, в котором производятся измерения напряженности электрической составляющей электромагнитного поля по двум направлениям - по линии профиля и вкрест него. Метод позволяет обнаружить наличие нелинейных и других анизотропных структур в грунте (линз и других неоднородностей), оценить их глубину залегания, дать приближенную оценку плотности и деформативных характеристик грунта (при сопоставлении с имеющимися на исследуемом объекте результатами определения этих характеристик по скважинам).

2) Методы электроразведки, позволяющие оценить наличие карста на глубине до 50-60 м и т. д.

Другие известные методы электроразведки, основанные на измерении постоянных и низкочастотных электрических полей (например, в варианте вертикального электрического зондирования - ВЭЗ могут быть применены на участках, свободных от различного рода электрических полей, т. е. на вновь осваиваемых территориях города. При этом достаточно надежные результаты могут быть получены при помощи аппаратуры "Эра".

Электромагнитная дефектоскопия. Данный вид дефектоскопии верхней части геологического разреза проводится на площадках и трассах проектируемого строительства при отсутствии геоподосновы с целью поиска геофизических аномалий, вызванных токонесущими металлическими и неметаллическими коммуникациями. Эти работы проводятся с использованием комплекса методов, состоящих из высокочастотной электроразведки, магниторазведки и биолокации. Все наблюдения ведутся по методике непрерывного геофизического профилирования.

Биолокация осуществляется специальными медно-никелевыми рамками, что позволяет определить наличие любых техногенных неоднородностей в геологическом разрезе до глубины около 10 м.

Электроконтактное динамическое зондирование.

Этот метод, объединяющий в себе динамическое зондирование и электрокаротаж, позволяет по лобовому сопротивлению внедрения зонда рассчитывать физико-механические характеристики грунта, а по значениям удельного электрического сопротивления - определять литологическую разновидность грунта. Совместно с буровыми работами этот метод позволяет эффективно изучать толщи песчаных, рыхлых и обводненных грунтов.

Сейсмический метод отраженных волн в модификации общей глубинной точки (MOB ОГТ) с использованием поперечных волн SH поляризации.

Применяется для изучения структурных особенностей разреза на большую глубину (до 50 м) с целью оценки карстово-суффозионной опасности территории. Может выполняться при наличии асфальтово-бетонного покрытия и мерзлоты.

Достоинством метода отраженных волн (MOB) является возможность изучения значительных глубин на относительно малых площадках, а также выделения литологических границ при любом законе изменения скорости с глубиной. Последнее позволяет выделять не только кровлю, но и подошву любого слоя.

Сейсмоакустический метод томографического прозвучивания стен и перекрытий.

Применяется для изучения внутреннего строения кладки стен и фундаментов с построением детальных карт с изолиниями показателей свойств материала в исследованном сечении.

Выполняется измерениями по периметру (или его части) выбранного сечения стены без нарушения сплошности материала.

Метод электроконтактного динамического зондирования грунтов (ЭДЗ), сочетающий в себе методы динамического зондирования и токового каротажа.

Он применяется для детального изучения разреза в точке до глубины 10-11 метров и определения физико-механических свойств грунтов. Метод удобен при работе из подвалов, котлованов, на откосах насыпей и в других сложных условиях. Требует для своей работы проходку твердого асфальтово-бетонного покрытия бурением шпуров и лидерным шурфованием.

Этот метод позволяет исследовать физико-механические свойства грунтов в их естественном залегании.

Радиоизотопные методы определения плотности и влажности применяются для оценки величин этих характеристик при изучении геологического разреза, контроля степени уплотнения грунтов засыпок, увлажнения стен подвалов и других конструкций и т. д.

Приложение 3

Геотехнические категории объектов строительства

Использование при устройстве оснований, фундаментов и подземных сооружений различных конструкций и способов производства работ требует соответствующего учета в системе регламентации ГКОС.

Сложность устройства оснований, фундаментов и подземных сооружений может учитываться тремя категориями, приведенными в табл. А.

Категории сложности инженерно-геологических условий (табл. Б) применительно к требованиям проектировщиков и строителей представляются усовершенствованной таблицей #M12СП 11-105#S.

Геотехническая категория объекта строительства устанавливается по табл. В по совокупности двух факторов:

- категории сложности устройства оснований, фундаментов и подземных сооружений городского назначения (табл. А);

- категории сложности инженерно-геологических условий (табл. Б).

Учет уровня ответственности зданий и сооружений при расчете несущих конструкций и оснований осуществляется путем введения коэффициента надежности по ответственности, согласно #M12ГОСТ 27751#S.

Уровни ответственности зданий и сооружений следует учитывать также при определении требований к их долговечности, номенклатуры и объема инженерных изысканий для строительства, установлении правил приемки, испытаний, эксплуатации и технической диагностики строительных объектов. Отнесение объекта к конкретному уровню ответственности и выбор значения осуществляется генеральным проектировщиком по согласованию с заказчиком.

Категории сложности устройства оснований, фундаментов и подземных сооружений городского назначения

#G01 - простая

2 - средней сложности

3 - сложная

Глубина котлована не превышает 5 м

Глубина котлована в пределах 5-12 м

Глубина котлована более 12 м

Простейшие крепления бортов котлована

Консольная, распорная и другие ограждающие конструкции бортов котлована

Ограждающие конструкции: с анкерами, многоярусные; ограждающие конструкции, являющиеся несущими для верхнего строения; строительство "вверх - вниз"

Осуществляется поверхностный отвод подземных вод (верховодки)

Осуществляется водопонижение иглофильтровыми установками; применяются противофильтрационные конструкции, построечный дренаж

Уровень подземных вод выше отметки дна котлована; осуществляется сложная система откачки подземных вод, снятие напора в подземных водах и сложная система постоянного дренажа

Используются фундаменты на естественном основании (плоские), свайные фундаменты длиной до 8 м

Используются плоские фундаменты на преобразованном основании (уплотнение, закрепление и др.), свайные фундаменты длиной до 15 м, плитные железобетонные фундаменты

Используются свайные фундаменты длиной более 15 м, свайно-плитные железобетонные фундаменты

В пределах контура здания (сооружения) коэффициент изменчивости нагрузок не превышает 1,2

Коэффициент изменчивости нагрузок в пределах контура здания (сооружения) 1,2-1,4

Коэффициент изменчивости нагрузок в пределах контура здания (сооружения) более 1,4

В зоне влияния строящегося здания (реконструкции) отсутствуют существующие здания или сооружения и магистральные коммуникации

В зоне влияния строящегося здания (реконструкции) присутствуют существующие здания или сооружения и магистральные коммуникации на расстоянии более 5 м

Близкое, менее 5 м, расположение существующих зданий или сооружений и магистральных коммуникаций

Категории сложности инженерно-геологических условий

#G0Факторы

1 - простая

2 - средней сложности

3 - сложная

Геоморфологические

Площадка (участок) в пределах одного геоморфологического элемента, поверхность горизонтальная, нерасчлененная

Площадка (участок) в пределах нескольких геоморфологических элементов одного генезиса, поверхность наклонная, слабо расчлененная

Площадка (участок) в пределах нескольких геоморфологических элементов различного генезиса, поверхность сильно расчлененная

Геологические

Не более двух различных по литологии слоев, практически горизонтальных (уклон <0,05); скальные грунты залегают с поверхности или перекрыты нескальными грунтами небольшой толщины (10-15 м)

Не более четырех по литологии слоев, уклон слоев <0,1; толщина слоев изменяется закономерно; скальные грунты имеют неровную кровлю и перекрыты нескальными грунтами

Многослойное (более 4 слоев) напластование грунтов с резко изменяющейся толщиной и линзовидным залеганием; скальные грунты имеют сильно расчлененную кровлю и перекрыты нескальными грунтами; имеются разломы разного порядка

Геотехнические

В пределах каждого слоя грунты однородны по свойствам, МПа; <2. Сопротивление конуса при статическом зондировании для слоев песчаных грунтов - 10; глинистых - 4

В пределах слоев грунты неоднородны по свойствам, 5<20 МПа; 24. Сопротивление конуса при статическом зондировании для слоев песчаных грунтов 5<10; глинистых - 1<<4

Значительная неоднородность показателей свойств в плане и по глубине, <5 МПа; >4. Сопротивление конуса при статическом зондировании для слоев песчаных грунтов - <5; глинистых <1

Гидрогеологические

Подземные воды отсутствуют или имеется один выдержанный горизонт, подземные воды имеют однородный химический состав

Два и более выдержанных горизонтов подземных вод, подземные воды имеют неоднородный химический состав и напор

Сложное чередование водоносных и водоупорных слоев грунтов, горизонты и напоры подземных вод и их гидравлическая связь меняются по простиранию, химический состав и загрязненность вод различны

Природные и техногенные процессы

Отсутствуют

Локальные очаги неблагоприятных природных и техногенных процессов, потенциальная опасность проявления карстовых и карстово-суффозионных процессов

Широкое распространение неблагоприятных природных и техногенных процессов, оказывающих решающее влияние на выбор проектных решений, строительство и эксплуатацию

Специфические и структурно-неустойчивые грунты

Специфические грунты отсутствуют. Отсутствуют прослои и линзы с 5 МПа

Отдельные слои сложены специфическими или структурно-неустойчивыми грунтами

Преобладают слои специфических или структурно-неустойчивых грунтов, оказывающих решающее влияние на выбор проектных решений, строительство и эксплуатацию

Геотехнические категории объектов строительства

#G0Категория сложности инженерно-геологических условий

Категория сложности устройства оснований, фундаментов и подземных сооружений

1

2

3

1

1

1

2

2

1

2

3

3

2

3

3

Приложение 4

Методы защиты существующих зданий от влияния нового строительства (реконструкции)

Защита существующих зданий и сооружений и их оснований и фундаментов при строительстве новых и реконструируемых выполняется в случаях:

- расположения существующего здания в зоне влияния нового (реконструируемого) здания;

- устройство заглубленных помещений в существующем здании, влияющих на его деформации;

- при устройстве фундаментов с применением специальных видов работ (замораживание, инъекции и др.) и динамических воздействий.

При необходимости разработки проекта защиты существующих зданий, вблизи которых намечается новое строительство, он разрабатывается одновременно с проектом нового строительства и, как правило, выполняется в две стадии:

- на стадии ТЭО;

- на стадии рабочих чертежей.

Для обеспечения эксплуатационной пригодности существующих зданий и сооружений, вблизи которых планируется новое строительство, целесообразно применение следующих основных методов их защиты и производства работ, в том числе:

- фундаменты на естественном основании: усиление оснований, увеличение опорной площади фундаментов, устройство перекрестных лент или фундаментной плиты, усиление фундаментной плиты, усиление сваями различных видов (буроинъекционными, буронабивными, составными вдавливаемыми, забивными и другими).

- свайные фундаменты: усиление свай, устройство дополнительных свай с уширением ростверков, изменение конструкции свайного фундамента за счет пересадки несущих конструкций на дополнительные сваи со значительно большей несущей способностью, устройство перекрестных лент или сплошной железобетонной плиты на свайных фундаментах, уширение ростверков, усиление тела ростверков;

- ограждающие конструкции (шпунт, стены в грунте различных конструкций и способов их изготовления);

- закрепление грунтов различными способами (цементация, смолизация, буросмесительный метод и т. п.) в зонах сопряжения существующего и реконструируемого или нового сооружения;

- использование в новом строительстве конструктивных решений, не создающих дополнительных воздействий на существующие конструкции (решения консольного типа со сваями, применение вдавливаемых и завинчиваемых конструкций свай и т. п.).

Основными причинами деформаций существующих зданий и сооружений при строительстве вблизи них могут являться:

- изменение гидрогеологических условий, в том числе подтопление, связанное с барражным эффектом при подземном строительстве, или понижение уровня подземных вод;

- увеличение вертикальных напряжений в основании под фундаментами существующих зданий, вызванное строительством вблизи них;

- устройство котлованов или изменение планировочных отметок;

- технологические факторы, такие как динамические воздействия, влияние устройства всех видов свай, фундаментов глубокого заложения и ограждающих конструкций котлованов, влияние устройства инъекционных анкеров, влияние специальных видов работ (замораживание, инъекция и пр.);

- негативные процессы в грунтовом массиве, связанные с выполнением геотехнических работ (суффозионные процессы, образование плывунов и пр.).

Степень влияния строительства новых зданий на расположенные вблизи здания и сооружения, как правило, в большой мере обусловливается технологией производства работ и последовательностью их возведения. Следует учитывать изменения физико-механических свойств грунтов и гидрогеологических условий в процессе соседнего строительства, в том числе с учетом сезонного промерзания и оттаивания грунтового массива.

Расчет оснований и фундаментов существующих зданий по I группе предельных состояний при строительстве вблизи них новых зданий следует выполнять в следующих случаях:

- устройства выработок и траншей (в том числе под защитой тиксотропных растворов) вблизи зданий;

- снижения планировочных отметок вблизи наружных стен зданий;

- изменения поровых давлений в грунтовом массиве при незавершенном процессе консолидации;

- передачи на существующие фундаменты дополнительных нагрузок и воздействий.

В случае применения при строительстве забивки и вибропогружения свай или шпунта следует выполнять проверку на динамическую прочность несущих конструкций существующих зданий, ближайших к погружаемым элементам.

Расчет оснований существующих зданий или сооружений по II группе предельных состояний должен выполняться во всех случаях, если они находятся в зоне влияния нового строительства.

Текст документа сверен по:

научно-техническое издание

/ Правительство Москвы; Москомархитектура. -

М.: ГУП "НИАЦ", 2004

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3