Одобрен
Письмом Госстроя РФ
от 01.01.01 г. N 9-20/112
СИСТЕМА НОРМАТИВНЫХ ДОКУМЕНТОВ В СТРОИТЕЛЬСТВЕ
СВОД ПРАВИЛ ПО ИНЖЕНЕРНЫМ ИЗЫСКАНИЯМ ДЛЯ СТРОИТЕЛЬСТВА
ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ ИЗЫСКАНИЯ
ДЛЯ СТРОИТЕЛЬСТВА
ЧАСТЬ VI. ПРАВИЛА ПРОИЗВОДСТВА ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ
GODE OF PRACTICE
ENGINEERING GEOLOGICAL SITE INVESTIGATIONS FOR CONSTRUCTION
СП
Дата введения
1 июля 2004 года
ПРЕДИСЛОВИЕ
Разработан Производственным и научно-исследовательским институтом по инженерным изысканиям в строительстве (ФГУП "ПНИИИС") Госстроя России при участии Геологического факультета МГУ, ФГУП "Противокарстовая и береговая защита", МГСУ, ОАО "Всероссийский научно-исследовательский институт гидротехники им. ", "ИМЦ Стройизыскания", Объединенным научным Советом по криологии Земли РАН, ЗАО "Геологоразведка".
Внесен ФГУП "ПНИИИС" Госстроя России.
Одобрен Управлением стандартизации, технического нормирования и сертификации Госстроя России (Письмо от 01.01.2001 N 9-20/112).
Принят и введен в действие с 1 июля 2004 г. впервые.
ВВЕДЕНИЕ
Свод правил по инженерно-геологическим изысканиям для строительства (Часть VI. "Правила производства геофизических исследований") разработан в развитие обязательных положений и требований СНиП "Инженерные изыскания для строительства. Основные положения". Свод правил дополняет серию документов СП 11-105 - "Инженерно-геологические изыскания для строительства" (Части I - V).
Согласно СНиП "Система нормативных документов в строительстве. Основные положения" настоящий документ является федеральным нормативным документом Системы и устанавливает общие технические требования и правила, состав и объем геофизических исследований, выполняемых в составе инженерно-геологических изысканий на соответствующих этапах (стадиях) освоения и использования территорий: разработка предпроектной и проектной документации, строительство (реконструкция), эксплуатация и ликвидация (консервация) предприятий, зданий и сооружений.
Настоящий Свод правил является первым специализированным документом федерального уровня, регламентирующим правила производства геофизических исследований, выполняемых в составе инженерно-геологических изысканий. В связи с этим в документе сформулированы инженерно-геологические задачи, решаемые геофизическими методами (раздел 6) и приведены сведения справочного характера о физических основах методов (раздел 5), необходимые главным образом инженерам-геологам и проектировщикам, участвующим в составлении заданий для геофизических исследований.
1. ОБЛАСТЬ ПРИМЕНЕНИЯ
Настоящий Свод правил устанавливает основные технические требования и правила производства геофизических исследований при инженерно-геологических изысканиях для строительства, обеспечивающие выполнение обязательных требований, предусмотренных СНиП "Инженерные изыскания для строительства. Основные положения" и СП "Инженерно-геологические изыскания для строительства. Общие правила производства работ". Часть I.
Настоящий документ устанавливает состав и методы производства геофизических исследований, апробированные при инженерно-геологических изысканиях в различных инженерно-геологических условиях, в том числе на территориях распространения специфических грунтов и развития опасных геологических и инженерно-геологических процессов, и предназначен для применения юридическими и физическими лицами, осуществляющими деятельность в области инженерных изысканий для строительства на территории Российской Федерации.
2. НОРМАТИВНЫЕ ССЫЛКИ
В настоящем Своде правил приведены ссылки на следующие нормативные документы:
СНиП 2.01.15-90. Инженерная защита территорий зданий и сооружений от опасных геологических процессов. Основные положения проектирования
СНиП . Система нормативных документов в строительстве. Основные положения
СНиП . Инженерные изыскания для строительства. Основные положения
СНиП . Геофизика опасных природных воздействий
СНиП II-7-81*. Строительство в сейсмических районах
ГОСТ 8.002-86*. ГСИ. Государственный надзор и ведомственный контроль за средствами измерений. Основные положения
ГОСТ 8.326-89. ГСИ. Метрологическое обеспечение разработки, изготовления и эксплуатации нестандартизированных средств измерения. Общие положения
ГОСТ 9.602-89*. Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии
ГОСТ 12.0.001-82*. ССБТ. Система стандартов по безопасности труда. Основные положения
ГОСТ . Бетоны. Ультразвуковые методы определения прочности
ГОСТ . Грунты. Методы статистической обработки результатов испытаний
ГОСТ 21.302-96. Система проектной документации для строительства. Условные графические обозначения в документации по инженерно-геологическим изысканиям
ГОСТ . Грунты. Методы радиоизотопных измерений плотности и влажности
ГОСТ *. Породы горные. Метод полевого испытания пенетрационным каротажем
ГОСТ . Метод полевого определения температуры
СП . Инженерно-экологические изыскания для строительства
СП . Инженерно-геологические изыскания для строительства. Часть I. Общие правила производства работ
СП . Инженерно-геологические изыскания для строительства. Часть II. Правила производства работ в районах развития опасных геологических и инженерно-геологических процессов
СП . Инженерно-геологические изыскания для строительства. Часть III. Правила производства работ в районах распространения специфических грунтов
СП . Инженерно-геологические изыскания для строительства. Часть IV. Правила производства работ в районах распространения многолетнемерзлых грунтов
СП . Инженерно-геологические изыскания для строительства. Часть V. Правила производства работ в районах с особыми природно-техногенными условиями
СП . Изыскания источников водоснабжения на базе подземных вод
СП . Изыскания грунтовых строительных материалов
РСН 60-86. Инженерные изыскания для строительства. Сейсмическое микрорайонирование. Нормы производства работ
РСН 64-87. Инженерные изыскания для строительства. Технические требования к производству геофизических работ. Электроразведка
РСН 65-87. Инженерные изыскания для строительства. Технические требования к производству геофизических работ. Сейсмическое микрорайонирование
РСН 66-87. Инженерные изыскания для строительства. Технические требования к производству геофизических работ. Сейсморазведка
РСН 75-90. Инженерные изыскания для строительства. Технические требования к производству геофизических работ. Каротажные методы
РД 153-39.4Р (ВСН). Инженерные изыскания для строительства магистральных нефтепроводов
Инструкция по гравиметрической разведке. - М.: Недра, 1975
Инструкция по магниторазведке. - М.: Недра, 1984.
3. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
3.1. Термины с соответствующими определениями, использованные в настоящем Своде правил, приведены в Приложении А <*>.
<*> Здесь и далее в тексте при ссылках на пункты и разделы, таблицы и приложения имеется в виду настоящий Свод правил.
4. ОБЩИЕ ПОЛОЖЕНИЯ
4.1. Геофизические исследования при инженерно-геологических изысканиях являются самостоятельным видом работ согласно п. 5.1 СП (часть I). В соответствии с п. 5.7 СП (часть I) они выполняются на всех стадиях (этапах) проектирования в сочетании с другими видами инженерно-геологических работ с целью:
определения геологического строения массива горных пород;
выявления тектонических нарушений, в том числе активных, зон повышенной трещиноватости и обводненности;
определения глубины залегания уровня подземных вод, водоупоров, направления движения потоков подземных вод, а также гидрогеологических параметров грунтов и водоносных горизонтов;
определения состава, состояния и свойств грунтов в массиве и их изменений во времени;
выявления и изучения геологических процессов и их изменений во времени;
проведения мониторинга опасных геологических и инженерно-геологических процессов;
сейсмического микрорайонирования территории.
4.2. При изысканиях для разработки предпроектной документации на больших площадях (трассах значительной протяженности), в районах с развитием опасных инженерно-геологических процессов и в особых условиях (шельф, подрабатываемые и урбанизированные территории), а также при мониторинге возможных изменений геологической, геокриологической и экологической обстановки геофизические исследования рекомендуется выполнять в составе первоочередных работ.
4.3. Геофизические исследования обладают рядом особенностей, выделяющих их среди других видов инженерно-геологических исследований:
получаемая с их помощью информация носит интегральный характер, т. е. относится к определенному объему (а не к точке) пород;
геофизические методы позволяют прослеживать геологические границы непрерывно;
в ряде случаев информация о характеристиках массива может быть получена преимущественно с помощью геофизических методов (например, оценка неоднородности массива, определение динамических модулей упругости);
геофизические исследования в большинстве случаев проводятся без нарушения сплошности изучаемой геологической среды и могут выполняться многократно (с любой заданной периодичностью) без изменения условий наблюдения, что позволяет эффективно использовать их для проверки получаемой информации и проведения мониторинга изменений геологической среды;
геофизические наблюдения позволяют оценивать состояние пород и локализовать участки прогнозируемого его изменения (например, напряжение, сплошность, влажность и пр.);
геофизические исследования позволяют производить дистанционные наблюдения, в том числе в процессе мониторинга;
геофизические исследования по стоимости и срокам выполнения во многих случаях предпочтительнее горнопроходческих, полевых опытных и других видов изысканий, особенно на стадии обоснования инвестиций.
4.4. Необходимым условием применения любого геофизического метода является наличие дифференциации исследуемых сред по физическим свойствам, достаточной для ее установления с помощью имеющихся технических средств.
4.5. Геофизические методы должны быть обеспечены:
соответствующей аппаратурой, точность которой должна обеспечивать решение поставленной задачи, с полным комплектом необходимого оборудования;
корректными системами наблюдений в различных условиях проведения исследований;
надежными способами интерпретации результатов измерений.
4.6. Геофизические методы по изучаемым физическим полям и их природе, а также свойствам грунтов подразделяются на:
электромагнитные;
сейсмоакустические;
магнитометрические;
гравиметрические;
ядерно-физические;
газово-эманационные;
термометрические.
4.7. Геофизические методы по технологиям (виду) наблюдений подразделяются на:
аэрокосмические или дистанционные;
наземные;
скважинные;
подземные;
лабораторные;
смешанных технологий.
4.8. Сокращенные названия геофизических методов, используемые в настоящем документе, приведены в Методы геофизических исследований и краткая характеристика геофизических методов приведены в Приложениях В и Г.
4.9. В тех случаях, когда поставленная инженерно-геологическая задача (п. 4.1) не может быть однозначно решена одним из геофизических методов или ее решение требует дополнительной проверки, следует использовать комплекс геофизических методов, включающий 1 - 2 основных метода и вспомогательные методы, выбираемые по результатам работ, использующих основные методы (Приложение Д).
Основными являются методы, которые могут решать задачу самостоятельно и основаны на существенном различии контактирующих пород по свойствам, определяющим структуру и интенсивность исследуемого поля.
Вспомогательные методы, как правило, не решают задачи самостоятельно, а применяются для уточнения решений, найденных с помощью основных методов. Их применяют для уточнения природы геофизических аномалий, детализации геометрии геологических объектов, получения дополнительных характеристик изучаемой среды.
4.10. Основными показателями, которые влияют на выбор рационального комплекса методов, являются:
информативность метода по отношению к решаемой задаче в конкретных инженерно-геологических условиях;
стоимость работ, выполняемых данным методом, и его производительность, определяющая сроки работ;
количество обслуживающего персонала;
трудоемкость и сложность обработки результатов наблюдений.
4.11. Программа геофизических исследований, являющаяся составной частью программы инженерно-геологических изысканий, разрабатывается на основании технического задания заказчика с учетом собранных материалов по геофизической изученности территории, а также материалов инженерно-геологических и гидрогеологических изысканий прошлых лет, выполненных на исследуемой территории, или в аналогичных условиях на прилегающих участках (территориях).
При разработке программы геофизических исследований формируется априорная физико-геологическая модель исследуемой территории, в соответствии с которой и с учетом категории сложности инженерно-геологических условий (приложение Б СП (часть I)), а также в соответствии с Приложениями Б и Д намечаются состав, объем, методика и технология геофизических исследований.
В случае, когда геофизические исследования проводятся как отдельный самостоятельный вид работ, программа составляется только на геофизические работы и исследования.
4.12. Программа геофизических исследований должна быть увязана по задачам, срокам и объемам с программами других видов изысканий во избежание дублирования или для экономии времени и средств на производство изыскательских работ.
4.13. При производстве геофизических исследований необходимо соблюдать технические требования, изложенные в нормативных документах: РСН 64-87 для электроразведки, РСН 66-87 для сейсморазведки, РСН 75-90 для каротажных работ, "Инструкции по гравиметрической разведке", "Технической инструкции по магнитной разведке".
4.14. Средства измерений, используемые для выполнения геофизических исследований, на основании Закона Российской Федерации "Об обеспечении единства измерений" должны быть аттестованы и проверены в соответствии с требованиями нормативных документов Госстандарта России (ГОСТ 8.002*, ГОСТ 8.326 и др.).
Организации, выполняющие геофизические исследования, должны вести учет средств измерений, подлежащих поверке в установленном порядке.
4.15. При выполнении геофизических работ должны соблюдаться требования нормативных документов по охране труда, об условиях соблюдения пожарной безопасности и охране окружающей природной среды (ГОСТ 12.0.001* и др.).
5. МЕТОДЫ ГЕОФИЗИЧЕСКИХ ИССЛЕДОВАНИЙ
5.1. Электромагнитные методы
5.1.1. Электромагнитные методы, основанные на изучении естественных и искусственно создаваемых электромагнитных полей различного происхождения, включают методы естественного электромагнитного поля, методы постоянного (или низкочастотного) тока и методы переменных электромагнитных полей.
Методы естественного электромагнитного поля
5.1.2. Методы естественного электрического поля (методы ЕП) электрохимического и электрокинетического происхождения основаны на связи электропотенциалов этих полей с направлением и интенсивностью соответствующих процессов. На изучении полей электрохимического происхождения основаны способы обнаружения и локализации в пространстве мест коррозии металлических конструкций или их элементов, а также мест окислительно-восстановительных реакций, протекающих в породах. На изучении полей электрокинетического происхождения, обусловленных диффузионно-адсорбционными и фильтрационными процессами в породах, основаны способы обнаружения мест питания, фильтрации и разгрузки естественных и техногенных вод.
В методе ЕП применяются два способа наблюдений: способ потенциала, когда на каждой точке измеряют потенциал по отношению к какой-либо общей точке профиля или площадки, и способ градиента потенциала, при котором измеряется разность потенциала между соседними точками. Интерпретация, как правило, выполняется на качественном уровне.
Каротаж потенциалов собственной поляризации (ПС), изучающий поля той же природы, позволяет выделять сухие и водоносные пласты, зоны минерализации и т. п.
5.1.3. Метод естественного импульсного электромагнитного поля (ЕИЭМПЗ) основан на возникновении локальных электромагнитных полей при механоэлектрических преобразованиях горных пород под воздействием механических нагрузок. Частота электромагнитных импульсов является индикатором процессов деформации в скрытой стадии их развития, позволяя локализовать места подготавливаемых нарушений сплошности.
Методы постоянного (низкочастотного) тока
5.1.4. Методы сопротивления основаны на изучении поля, создаваемого в массиве искусственными источниками постоянного или низкочастотного переменного тока, пропускаемого между питающими электродами - заземлениями. Измеряется сила этого тока и напряжение между приемными электродами, по значениям которых с учетом геометрического коэффициента установки рассчитывается кажущееся сопротивление (
), являющееся параметром электрического поля, косвенно характеризующим истинные электрические параметры геологической среды. При этом увеличение геометрических размеров установок ведет к увеличению глубинности исследований.
При измерениях напряжения электрического поля в различных азимутах возможно изучение пространственной структуры грунтового массива. Методами, использующими эту возможность, являются: метод двух составляющих (МДС), метод векторных измерений электрического поля (ВИЭП), круговые наблюдения.
Основными используемыми модификациями метода сопротивления являются электропрофилирование (ЭП) и вертикальное электрическое зондирование (ВЭЗ), выполняемые различными установками. Глубинность метода сопротивления оценивается по
5.1.5. Электропрофилирование (ЭП) выполняется путем производства измерений с помощью неизменяемой установки с выбранным шагом по профилю.
Электропрофилирование может выполняться в различных модификациях, имеющих свои преимущества и недостатки в зависимости от стоящих задач и условий их решения: симметричное четырехэлектродное (СЭП), двухстороннее трехэлектродное - комбинированное (КЭП), дипольное двухстороннее (ДЭП). Все эти модификации могут быть использованы в варианте двух составляющих (ЭП МДС). Одновременное использование нескольких разносов позволяет производить исследования на нескольких уровнях глубин. Чаще всего применяется двухразносное электропрофилирование.
Первичным результатом ЭП являются графики кажущегося электрического сопротивления (
) вдоль профиля наблюдений.
Интерпретация результатов ЭП дает возможность определения положения в плане границ пород, имеющих разное удельное электрическое сопротивление (УЭС).
При использовании ЭП в модификации МДС возможна оценка азимута простирания изучаемых границ, а в благоприятных условиях и глубины их залегания по профилю. В методе ВИЭП предметом исследований в первую очередь является определение местоположения объекта, создающего аномалию.
5.1.6. Вертикальное электрическое зондирование (ВЭЗ) выполняется путем производства измерений кажущихся сопротивлений
при изменяющихся линейных размерах измерительной установки. Результатом являются кривые ВЭЗ, представляющие собой графики зависимости
от действующего расстояния измерительной установки (разноса - r). ВЭЗ, выполняемые в нескольких азимутах при неизменном положении центра, носят название круговых ВЭЗ (КВЭЗ). При использовании дипольных измерительных установок метод имеет название дипольного электрического зондирования (ДЭЗ).
Вертикальные электрические зондирования выполняются как в отдельных точках или по профилям, так и по площади на поверхности суши или на акваториях. Глубинность исследований и разрешающая способность метода зависят от соотношения сопротивлений пород на их границах и от размеров измерительной установки.
Интерпретация кривых ВЭЗ, выполняемая различными способами (палеточным, методом подбора, с помощью различных компьютерных программ, методом особых точек), позволяет определять УЭС пород и положение в пространстве границ пород.
По значениям УЭС, используя установленные связи и зависимости, возможна оценка параметров состава пород, их строения, состояния и свойств.
5.1.7. В модификации двух составляющих метода ВЭЗ (ВЭЗ МДС), используемого для получения информации о горизонтально неоднородных геоэлектрических массивах, кроме традиционных измерений
производят измерения разности потенциалов в приемной линии, расположенной перпендикулярно основной измерительной установке.
Интерпретация кривых ВЭЗ МДС производится с помощью специальных номограмм и позволяет определять не только УЭС, мощность и глубину залегания геоэлектрических границ, но и элементы их залегания.
5.1.8. Бесконтактное электрическое зондирование, выполняемое на низких частотах с применением специальных емкостных электродов, используется в условиях, где осуществление заземления затруднено (при работах зимой, на скальных породах, твердых покрытиях). В этой модификации ВЭЗ применяется установка точечного зондирования, в которой фиксируется положение одного питающего электрода (второй располагается в бесконечности), а приемный диполь перемещается. При профильных наблюдениях, когда соседние установки перекрывают разносами друг друга, точечные зондирования пересчитываются (трансформируются) в трехэлектродные и интерпретируются обычным способом.
5.1.9. Электрическая томография, являющаяся модификацией метода ВЭЗ с использованием многоканальных (многоэлектродных) установок, применяется при детальных исследованиях двумерно неоднородных разрезов. В этой модификации ВЭЗ вдоль профиля наблюдений устанавливается набор электродов, расположенных на равных расстояниях. При этом электроды многократно используются в качестве как приемных, так и питающих.
Обработка и интерпретация данных электрической томографии ведется с помощью специального программного обеспечения.
5.1.10. Каротаж сопротивлений (КС) выполняется путем производства измерений силы тока в питающей и напряжения в приемной линиях и вычисления кажущихся сопротивлений
пород при перемещении измерительной установки (зонда) вдоль скважины.
Обязательным условием выполнения каротажа методом КС является отсутствие обсадных металлических труб. Контакт питающих и приемных электродов с грунтом (стенкой скважины) осуществляется либо через жидкость, заполняющую ствол скважины, либо (в сухих скважинах) путем специального прижима электродов к стенке. При работах в скважинах, заполненных водой, измерения могут выполняться непрерывно в процессе перемещения (поднятия или опускания) зонда, в сухих скважинах измерения выполняются в точечном режиме. Результатом каротажа являются каротажные диаграммы (графики зависимости
от глубины). При интерпретации каротажных диаграмм определяется положение границ пород, пересекаемых скважиной, и их УЭС.
5.1.11. Боковое каротажное зондирование (БКЗ) выполняется путем определения
в исследуемых точках скважины при использовании набора зондов различного размера. В результате количественно характеризуется геоэлектрическое строение околоскважинного пространства на различных расстояниях от ствола скважины. Это позволяет судить о глубине проникновения в породы бурового раствора и удельных сопротивлениях пород, вскрытых скважиной.
5.1.12. Токовый каротаж выполняется в сухих скважинах путем измерения силы тока в питающей цепи при перемещении зонда. При этом оценивается положение границ пород, обеспечивающих различные условия заземления питающего электрода и, соответственно, сила тока.
Модификацией токового каротажа является электродинамическое зондирование (ЭДЗ), которое совмещает токовый каротаж с динамическим зондированием. Оба метода исследования выполняются одновременно единым измерительным зондом - скважинным снарядом.
5.1.13. Резистивиметрия (Рез) является методом определения УЭС среды (грунта или жидкости), помещаемой в специальную форму (резистивиметр), содержащую в конструкции питающие и приемные электроды, путем измерения силы тока и напряжения. Возможны варианты измерений при помещении и перемещении резистивиметра в исследуемом водоеме или стволе скважины. По измеренному значению УЭС и имеющимся корреляционным связям его с параметрами состава пород, минерализацией жидкости оцениваются эти характеристики, обнаруживаются участки изменения минерализации воды в исследуемом водоеме или скважине, свидетельствующие о разгрузке подземных или поглощении поверхностных вод, а также о наличии источников загрязнения.
5.1.14. Метод заряженного тела (МЗТ) позволяет изучать распределение потенциала или градиента потенциала на поверхности земли, создаваемого искусственным источником тока, расположенным в заряжаемом теле, находящемся в скважине. В зависимости от задач и, соответственно, модификации метода заряжаемым телом может служить либо опускаемый в скважину мешочек с солью, создающий при растворении электролит, обладающий повышенной электропроводностью (гидрогеологический вариант), либо вскрытый скважиной проводник, такой, как руда, металлическая конструкция (так называемый рудный вариант). Изучение эквипотенциальных линий на поверхности земли позволяет судить в первом случае о направлении и скорости фильтрации подземных вод, во втором - о протяженности и конфигурации исследуемого проводящего объекта.
Метод вызванной поляризации
5.1.15. Метод вызванной поляризации (ВП) выполняется путем изучения вторичного электрического поля, обусловленного электрохимическими и электрокинетическими процессами, возникающими при пропускании тока в горных породах, содержащих минералы с электронным типом проводимости и внутрипоровую влагу. Интенсивность процесса ВП - поляризуемость (
) определяется с использованием трех основных способов измерения.
Измерение ВП во временной области (или в импульсном режиме) основано на регистрации разности потенциалов в приемной линии во время и через определенное время после выключения прямоугольного импульса тока в питающей линии. Изучаемая кажущаяся поляризуемость (
) вычисляется как отношение вызванной поляризации через фиксированное время после отключения питающего тока (
) к напряжению возбуждающего тока (
).
Амплитудно-частотные измерения поляризуемости основаны на изучении поля при пропускании в питающих линиях переменного тока двух различных частот. Параметр поляризуемости (PFE) вычисляется как отношение разности эффекта на низких и высоких частотах к электрическому полю на низкой частоте.
Фазово-частотные измерения основаны на фиксации сдвига фаз основной гармоники в приемной линии относительно токовой.
Метод ВП может использоваться в модификации как зондирования (ВЭЗ ВП), так и профилирования (ЭП ВП). При этом применяются такие же установки, как в методе сопротивлений. Метод ВП необходимо применять в комплексе с методами сопротивления.
Интерпретация ВП производится при профилировании на качественном уровне, а при зондировании используются соответствующие компьютерные программы или палетки. При геологической интерпретации результатов метода ВП используют установленные связи
с вещественным составом пород или их состоянием (мерзлое - талое) или судят о наличии рудных минералов и электропроводящих тел.
Методы переменных электромагнитных полей
5.1.16. Из методов электроразведки переменными электромагнитными полями в практике инженерных изысканий чаще всего используются методы, основанные на измерении искусственных установившихся гармонических или неустановившихся полей различной частоты. Преимуществом методов переменного тока является возможность выполнять наблюдения без гальванического контакта (без заземлений).
5.1.17. Установившиеся гармонические поля используются в следующих методах:
частотные электромагнитные зондирования (ЧЭМЗ) в различных модификациях;
собственно частотные (ЧЗ), дистанционные (ДЗ), изопараметрические (ИЗ);
при гальваническом или индуктивном способе возбуждения поля различных частот;
дипольное индуктивное профилирование (ДИП). Другое используемое название - дипольное электромагнитное профилирование (ДЭМП);
радиокомпарационный метод (радиокип);
радиоволновое просвечивание (РВП). Другое используемое название - радиоволновая геоинтроскопия (РВГИ);
электромагнитный каротаж (ЭМК), включающий диэлектрический (ДК) и индукционный (ИК).
5.1.18. Частотное электромагнитное зондирование (ЧЭМЗ) является методом, изучающим электрическую или магнитную составляющую электромагнитного поля, создаваемого гальваническим (с помощью заземления) или индукционным способом при помощи диполя или петли (рамки), питаемых переменным током. В зависимости от используемой модификации метода регистрируется напряженность компонентов магнитной (
) или электрической (
) составляющей поля (полного вектора, отдельных компонентов или их отношения) как функции периода переменного тока (
), расстояния между излучателем и приемником (r), или обобщенного электромагнитного параметра р (
), где k - волновое число). Эффективное кажущееся сопротивление (
) вычисляется из отношения измеренной разности потенциалов в приемном устройстве к силе тока в излучателе с учетом геометрического коэффициента установки. Уменьшая частоту тока, увеличивают глубинность исследования вследствие "скин-эффекта".
Методы интерпретации кривых частотного зондирования разработаны в основном для случая горизонтального строения разреза. В результате устанавливается положение горизонтальных или субгоризонтальных границ пород, характеризующихся отличающимися УЭС и (или) диэлектрической проницаемостью.
Геологическое истолкование получаемых материалов выполняется в основном на качественном уровне с использованием имеющихся сведений о зависимостях УЭС и диэлектрической проницаемости от состава и состояния исследуемых пород.
5.1.19. При дипольном индуктивном профилировании (ДИП) или дипольном электромагнитном профилировании (ДЭМП) изучается поведение измеряемого параметра электромагнитного поля (напряженность, отношение компонентов вектора напряженности) вдоль профиля наблюдений. Модификациями электромагнитного профилирования являются ВЧЭП (высокочастотное электромагнитное профилирование) и НЭП (непрерывное электромагнитное профилирование). Интерпретация данных профилирования позволяет установить положение геологических границ или локальных проводящих объектов в плане, а при благоприятных условиях оценить состав пород.
5.1.20. В радиокомпарационном методе (радиокип) изучается поле удаленных длинноволновых (ДВ) или сверхдлинноволновых (СДВ) радиостанций. Метод применяется в модификации профилирования с измерением электрических и магнитных составляющих поля и азимута вектора напряженности поля. По положению характерных аномалий на профиле фиксируются границы пород с разными УЭС и (или) диэлектрической проницаемостью.
5.1.21. В методе радиоволнового просвечивания (РВП) на выбранных оптимальных рабочих частотах измеряются компоненты электромагнитного поля (электрические или магнитные) и изучается поглощение энергии радиоволн породами, геологическими или техногенными образованиями, находящимися на трассе распространения волны, между приемной и излучающей антенной.
Передатчик и приемник с излучающей и приемной антеннами располагаются обычно в двух скважинах или в скважине и на поверхности, возможно также профилирование вдоль одной скважины. Анализ полученных данных позволяет определять удельное сопротивление и диэлектрическую проницаемость пород в естественном залегании и их распределение в изучаемом объеме среды. Диапазон применяемых частот (0,МГц) позволяет работать в породах с удельным электрическим сопротивлением от 20 Ом х м и выше при расстоянии между скважинами от 5 до 60 м.
Особым условием применения метода является наличие скважин с обсадкой ствола радиопрозрачными (полиэтиленовыми) трубами с внутренним диаметром не менее 45 мм.
5.1.22. При электромагнитном каротаже (ЭМК) возбуждение поля и его регистрация производятся с помощью антенн - магнитных диполей (катушек), перемещаемых вдоль ствола скважины при постоянном расстоянии между ними. Регистрируемая разность потенциалов связана с УЭС пород и их диэлектрической проницаемостью. Условием выполнения работ является отсутствие металлической обсадки скважины. Оценка влажности пород производится по корреляционным зависимостям диэлектрической проницаемости от содержания воды, установленным для пород различного состава. ЭМК может выполняться как в скважинах, заполненных жидкостью (буровым раствором), так и в сухих.
5.1.23. Неустановившиеся или импульсные поля используются в следующих методах:
метод переходных процессов (МПП);
зондирование становлением поля (ЗСП);
радиолокационное зондирование (РЛЗ);
радиолокационная аэросъемка.
5.1.24. В методах зондирования становлением поля (ЗСП) и переходных процессов (МПП) регистрируется процесс стабилизации поля, возникающего при искусственном возбуждении его прямоугольными импульсами постоянного тока. Различают две модификации метода: в ближней зоне (ЗСБЗ), которая находит наибольшее применение в решении инженерно-геологических задач, и в дальней зоне (ЗСДЗ). По результатам изучения процесса становления определяются приведенные кажущиеся сопротивления (
) и суммарная проводимость (
) для различных времен становления поля (t), меньшее из которых отвечает верхней части разреза, а наибольшее - обобщенной характеристике разреза в целом. Интерпретации палеточным и машинным способом подвергаются графики зависимости
и
от
. По результатам интерпретации выполняется расчленение разреза по вертикали на слои с различными УЭС.
5.1.25. При радиолокационном зондировании (РЛЗ) изучаются сигналы, являющиеся отражениями коротких радиоимпульсов от подповерхностных объектов. Изучаются кинематические и динамические характеристики, величина которых зависит от расстояния до отражающего объекта и электрических свойств среды. РЛЗ выполняется как в отдельных точках, так и при наблюдениях вдоль профилей. По результатам РЛЗ строятся временные разрезы, на которых отображается положение границ в координатах времени прохождения зондирующего сигнала. Они могут быть преобразованы в разрезы реальных глубин при наличии данных о скоростях распространения радиоволн во вмещающей среде. Для получения этих данных РЛЗ выполняется в режиме годографа, когда измерения проводятся при разносе приемного и передающего устройства. Динамические характеристики позволяют оценивать состав и состояние пород на трассе распространения сигнала.
Глубинность метода определяется диэлектрической проницаемостью и УЭС зондируемых пород. В водонасыщенных песчано-глинистых грунтах она исчисляется первыми метрами (Приложение Р), в многолетнемерзлых породах, ледниках, сухих песках - десятками и сотнями метров.
Для РЛЗ иногда используются другие названия - георадиолокационное зондирование (ГРЛЗ); георадиолокационное подповерхностное зондирование (ГПЗ).
5.1.26. Радиолокационная аэросъемка представляет собой модификацию РЛЗ, в которой излучающая и приемная антенны располагаются на летательном аппарате, а облучению подвергается определенная площадь земной поверхности. Получаемые данные преобразуются в видеоизображения, подобные аэрофотоснимкам. Характерные особенности изображения (плотность тона, рисунок, структура и др.) позволяют судить о состоянии приповерхностного слоя пород или почв, в первую очередь, о его обводненности.
5.2. Сейсмоакустические методы
5.2.1. Сейсмоакустические методы основаны на изучении динамических и кинематических характеристик упругих колебаний в среде, создаваемых искусственными источниками возбуждения. Предпосылкой применения сейсмоакустических методов является различие скоростей распространения упругих волн и характеристик их поглощения, обусловленное составом, свойствами и состоянием грунтов.
При сейсмоакустических исследованиях изучаются сейсмические свойства горных пород, к которым относятся скорости продольных (
), поперечных (
) и поверхностных (
) волн, соответствующие коэффициенты (декременты) поглощения
,
и
, а также величины их отношений.
5.2.2. Сейсмоакустические методы по диапазонам используемых частот колебаний подразделяются на:
сейсмические (диапазон частот менее 1 кГц);
акустические (диапазон частот кГц);
ультразвуковые (диапазон частот более 17 кГц).
5.2.3. Сейсмические методы по видам исследований разделяются в соответствии с п. 4.7.
5.2.4. К сейсмическим наземным методам относятся сейсмическое зондирование, сейсмическое продольное и непродольное профилирование в модификациях МПВ (КМПВ), МОВ, ОГТ, ОГП.
5.2.5. Метод преломленных волн (МПВ) и корреляционный метод преломленных волн (КМПВ) основаны на регистрации продольных и поперечных волн - преломленных (головных) и рефрагированных, формирующихся в разрезах, где наблюдается увеличение скоростей с глубиной (
). Благоприятными для применения МПВ (КМПВ) являются горизонтально-слоистые среды с небольшим числом слоев, характеризующихся большой дифференциацией по скоростям. МПВ (КМПВ) является основным методом при инженерных изысканиях, при определении глубины залегания подземных вод и при изучении упругих свойств грунтов.
5.2.6. Основным видом наблюдений является сейсмическое продольное профилирование. Реже используется непродольное профилирование (изучение вертикальных и крутопадающих контактов, в том числе сбросов, разломов, погребенных русел рек и т. п.). При продольном профилировании применяются системы наблюдений с получением встречных и нагоняющих годографов. Выносные пункты удара (возбуждения колебаний) желательно размещать на расстояниях, равных или кратных длине сейсмической косы. При детальном изучении верхней части разреза пункты удара (ПУ) располагаются не только на концах сейсмической косы, но и внутри интервала наблюдений.
При решении простых задач используется наблюдение при постоянной базе (расстоянии) между пунктом возбуждения и приемником (СППБ) или отдельными сейсмическими зондированиями (СЗ). При исследованиях на акваториях методические особенности применения МПВ связаны с необходимостью использования донных приемных устройств и достаточно мощных источников возбуждения.
5.2.7. Интерпретация сейсмических данных разделяется на два этапа:
корреляция волн, построение годографов, введение поправок и увязка систем годографов (первый этап);
расчет по годографам глубины залегания сейсмических границ, изучение характера изменения скорости упругих волн с глубиной и вдоль профиля - так называемое решение обратной задачи (второй этап).
5.2.8. Метод отраженных волн (МОВ) основан на регистрации упругих волн, отраженных от достаточно протяженных границ изменения волновых сопротивлений. Этим границам обычно соответствуют литологические и тектонические поверхности разделов геологических сред. При измерениях по методу МОВ изучаются кинематические (времена прихода, скорости распространения) и динамические (амплитуды, частоты) характеристики отраженных волн. Полевые исследования выполняются по системе многократных перекрытий. Для решения инженерно-геологических задач используются преимущественно фланговые наблюдения скратными перекрытиями. На участках с наиболее сложным строением выполняют наблюдения по системе 48-кратного перекрытия. Обработка данных МОВ полностью автоматизирована и выполняется на компьютерах. Окончательный результат обработки представляется в виде временных и глубинных разрезов, в некоторых случаях в виде пространственных картин расположения отражающих поверхностей. МОВ используется для определения глубины и характера залегания границ раздела геологических напластований, выявления структурных неоднородностей в строении массива пород.
5.2.9. Метод общей глубинной точки (ОГТ) является модификацией МОВ, применяющейся при работах в сложных сейсмических условиях при больших наклонах и несогласиях отражающих границ. Метод применяется как при работах на суше, так и на акваториях. В методе ОГТ для ослабления влияния многократно отраженных волн применяют суммирование сейсмических записей, относящихся к общим глубинным точкам одноименных отражений (середине расстояния источник - приемник) и получаемых с помощью системы многократных перекрытий. Избыточность системы многократных перекрытий позволяет решать задачу ослабления регулярных (многократных, обменных) и нерегулярных волн - помех, что используется в алгоритмах компьютерной обработки.
В случае инверсного скоростного разреза (верхний слой имеет большую скорость, чем нижележащий) эффективно применение метода отраженных волн в варианте ОГТ на поперечных волнах, обеспечивающего высокое разрешение при прослеживании границ в верхней части разреза.
5.2.10. Метод общей глубинной площадки (ОГП) является аналогом метода ОГТ в случае, когда анализу подвергаются преломленные волны, а регистрация проводится при малых базах наблюдений. Методика ОГП основана на многократном перекрытии при фланговых системах наблюдений с выносом и суммированием по общей (центральной) глубинной площадке, аналогично ОГТ. Вынос источника равен абсциссе начальной точки
для преломленной волны, соответствующей наиболее глубокой изучаемой границе. Это позволяет изучать при одной системе наблюдений несколько границ и представлять первичные данные в виде временных разрезов.
5.2.11. Скважинные методы включают сейсмический каротаж (СК), вертикальное сейсмическое профилирование (ВСП), сейсмическое просвечивание (СП).
При скважинных сейсмических измерениях прием или возбуждение волн осуществляется непосредственно в скважинах и, наряду с прямыми проходящими волнами, используются отраженные и преломленные.
5.2.12. Сейсмическим каротажем (СК) называется метод определения средних скоростей путем измерения времени распространения проходящих волн, возбуждаемых у устья скважины или на некотором расстоянии от нее, до скважинного сейсмоприемника, опускаемого на разную глубину. Методика обработки СК включает осреднение ломаной линией вертикальных годографов, получаемых в результате проведенных измерений. По точкам излома годографа определяются границы выделенных пластов, а по наклону - величины скоростей.
5.2.13. Вертикальное сейсмическое профилирование (ВСП) является эффективным методом околоскважинных и межскважинных исследований в сейсморазведочном диапазоне частот при распространении сейсмических волн во внутренних точках реальных сред. При ВСП используется система наблюдений, состоящая из источника колебаний и приемников (или одиночного приемника) упругих волн. Обычно в скважине перемещаются приемники, смонтированные в виде косы (приемник), а на поверхности земли перемещается, удаляясь от устья скважины, источник упругих колебаний (ПУ). Изучаются волны разных типов: продольные, поперечные и обменные. Анализируются не только первые вступления волн, но и вся сейсмограмма.
По расположению сейсмоприемников различают прямое ВСП (сейсмоприемники располагаются в скважине), обращенное ВСП (сейсмоприемники находятся на земной поверхности, а возбуждение упругих колебаний происходит в скважине) и комбинированное ВСП.
По технике записи различают однокомпонентное ВСП (Z) и трехкомпонентное (поляризационная модификация).
По системам наблюдений выделяют односкважинное и многоскважинное ВСП.
5.2.14. В подземных методах применяются те же модификации, что в наземных и скважинных исследованиях.
Наличие скважин и горных выработок позволяет изучать грунтовый массив путем сейсмического просвечивания (СП). При этом может проводиться межскважинное просвечивание с использованием проходящих волн. Просвечивание осуществляется между скважиной или другой горной выработкой и дневной поверхностью. Сейсмоприемники устанавливаются в одной из выработок (скважине), удары (взрывы) производятся по стенке в другой выработке (скважине). При этом используются скважинные эдектроискровые и пневматические источники.
В дисперсных породах расстояние между выработками (скважинами) должно быть не менее первых метров и не более нескольких десятков метров. В более плотных породах базы могут быть увеличены.
Интерпретация сейсмического просвечивания (СП) проводится по временам первых и последующих вступлений проходящих волн. Определяется скоростное строение массива, анализ которого позволяет выделять неоднородности во внутренних точках массива. Резкие локальные уменьшения скоростей упругих волн для определенных направлений указывают на наличие зон с пониженной скоростью (карст, зоны тектонических нарушений и т. п.). Компьютерная обработка осуществляется по стандартным программам с получением томографического изображения.
5.2.15. Непрерывное сейсмическое профилирование (НСП) является модификацией МОВ, используемой при исследованиях на акваториях с движущегося судна с использованием невзрывных источников и пьезокос в качестве приемных устройств. Частотный диапазон исследований составляет Гц. Исследования выполняются по отдельным профилям или по системе профилей (площадная съемка). Специфические помехи, характерные для НСП, убираются с помощью различных средств (технических, методических и программных при машинной обработке).
5.2.16. В акустических методах используются колебания сравнительно высоких частот (до 20 кГц), которые сильно поглощаются в исследуемой среде, поэтому изучаемые базы (глубины) невелики. Они варьируют от первых метров до первых десятков метров. Разрешающая способность методов (минимальные размеры изучаемых объектов) зависит от длительности и частоты изучаемого сигнала, глубины залегания исследуемых объектов, уровня помех и эффективности их подавления.
При акустических исследованиях, как правило, проводят комплексные измерения по методикам просвечивания и профилирования. При просвечивании получают надежные данные о скоростях продольных волн. Профилирование используют для определения скорости волн Релея, по которым рассчитываются скорости поперечных волн.
Акустические методы используются при изучении скальных массивов и песчано-глинистых пород в шурфах, котлованах, канавах. При исследовании пород в мерзлом состоянии широко используют методику продольного и кругового профилирования.
5.2.17. Акустический каротаж (АК) является одним из основных акустических методов и применяется в двух модификациях: точечный и волновой.
Точечный акустический каротаж обычно проводят многоканальным зондом, позволяющим вычислять интервальные скорости продольной (Р) и поверхностной (R) волн, которые после сглаживания используют для литологического расчленения разреза, выделения зон трещиноватости, расчета упругих и других физико-механических характеристик.
Волновой акустический каротаж проводят в скважинах, заполненных буровым раствором или водой, с непрерывной цифровой регистрацией волнового акустического сигнала и с последующей компьютерной обработкой. Этот громоздкий и сложный в производстве метод применяется для решения специальных задач в инженерной геологии.
5.2.18. Акустическое просвечивание (АП) между скважинами основано на изучении характеристик поля упругих колебаний с частотой до 10 кГц. При этом исследуются массивы пород до первых десятков метров. Межскважинное просвечивание позволяет подробно дифференцировать разрез. Эта особенность позволяет применять межскважинное просвечивание для изучения сложнопостроенных сред в тех случаях, когда малоэффективны традиционные методы сейсморазведки. В качестве источников сигнала могут использоваться скважинно-электроискровые.
5.2.19. Ультразвуковой метод применяется для измерения скоростей упругих волн в скальных, полускальных и мерзлых породах в лабораторных (на образцах пород) и естественных условиях (в обнажениях, стенках горных выработок, в разведочных шурфах и скважинах), с использованием частоты обычно свыше 25 кГц. В связи с большим затуханием упругих волн ультразвуковой частоты исследуемые базы не превышают первых метров. При ультразвуковых исследованиях применяются те же методические приемы, что и в акустических методах. Разнообразие систем наблюдения при измерениях можно свести к двум основным - профилированию и просвечиванию.
5.2.20. Ультразвуковой каротаж (УЗК) является специальным видом наблюдений в скальных породах и мерзлых грунтах, выполняемых по методике профилирования со встречной системой годографов. При этом одновременно прослеживаются продольные и поперечные или поверхностные волны. Измерения производят с помощью многоточечных каротажных снарядовдатчиков) в сухих не обсаженных скважинах.
УЗК выполняют с целью расчленения разреза и определения характеристик состава, строения и свойств массива.
5.2.21. Ультразвуковое просвечивание между скважинами выполняется, как правило, в скальных и мерзлых породах на базах 1 - 1,5 м с получением продольных и поперечных волн в субгоризонтальном направлении.
5.3. Магниторазведочные методы
5.3.1. Магниторазведочные методы применяются для целей геологического картирования в условиях магнитоактивных пород (основные изверженные, некоторые метаморфические и песчано-глинистые с содержанием обломков пород с повышенной магнитной восприимчивостью).
5.3.2. Микромагнитная съемка применяется для расчленения по литологическим признакам осадочных пород и четвертичных отложений, изучения трещиноватости скальных пород и геодинамических процессов на оползневых и карстоопасных участках. Используются приборы повышенной чувствительности (протонные, квантовые магнитометры) и специальные приемы обработки материалов.
5.3.3. Наземная профильная магниторазведка для целей картирования проводится в зависимости от масштаба съемки и стадии (этапа) проектирования при расстоянии между профилямим.
5.3.4. Микромагнитная съемка на площадках проводится в зависимости от масштаба съемки и стадии (этапа) проектирования при расстоянии между профилями м с шагом наблюдений по профилю 2 - 2,5 м, на отдельных обособленных профилях - с шагом 2 - 5 м, на оползневых участках - по сети от 1 х 1 до 2 х 2 м.
Микромагнитная съемка при изучении геодинамических процессов, связанных с подвижками отдельных частей массива грунтов и (или) перераспределением напряжений, проводится на закрепленных пунктах с периодичностью, обеспечивающей контроль за изменяющейся во времени геодинамической обстановкой.
5.4. Гравиразведочные методы
5.4.1. Гравиразведочный метод (гравиразведка) основан на изучении поля силы тяжести (
), аномалии которого связаны с изменением плотности пород. Отличительная особенность метода при инженерно-геологических изысканиях заключается в производстве наземных наблюдений на ограниченных площадках с целью поиска грунтовых неоднородностей. Наблюдения выполняются чувствительными высокоточными гравиметрами с применением методик регистрации и обработки, позволяющих оценить локальную аномалию с точностью несколько микрогал (
). В ряде случаев для большей дифференциации изучаемой среды возможно использование вторых производных силы тяжести (
), что на практике достигается разновысотными наблюдениями с помощью специальной вышки.
5.4.2. По результатам профильной или площадной съемок, выполняемых рейсами, начинающимися и заканчивающимися на опорных пунктах, после введения всех необходимых поправок строятся графики или карты аномалий силы тяжести в редукции Буге (
).
Интерпретация гравиметрии, при которой анализируются графики и карты аномалий поля силы тяжести, производится на качественном и количественном уровнях. В последнем случае на основе априорной геоплотностной модели изучаемой среды, базирующейся на информации о плотности пород и форме объекта, определяют его геометрические и плотностные характеристики. Кроме того, при проведении режимных наблюдений, выполняемых на закрепленных пунктах, высокоточная гравиразведка позволяет обнаруживать активные разрывные структуры.
Современная точность гравиметров позволяет фиксировать в верхней части разреза (до глубины 10 м) неоднородности, отличающиеся друг от друга по плотности на 0,02 - 0,03 г/см3.
5.5. Ядерно-физические методы
5.5.1. Ядерно-физические методы (радиоизотопные) базируются на существовании связей ядерных свойств пород с их плотностью, влажностью и глинистостью. Наиболее широко используются: гамма-гамма метод (ГГМ) определения плотности, нейтрон-нейтронный метод (ННМ) определения влажности и метод естественной радиоактивности для определения глинистости, как правило, в модификации скважинного и пенетрационного каротажа. Работы первыми двумя методами требуют использования искусственных радиоактивных источников.
5.5.2. ГГМ основан на рассеянии и ослаблении гамма-излучения на электронах атомов вещества, пронизываемого гамма-излучением. Источником гамма-квантов является цезий-137. Используются два способа: просвечивания (метод ослабления первичного гамма-излучения) и метод рассеянного первичного излучения. В обоих случаях измеряется плотность потока, или интенсивность (прошедших или рассеянных) гамма-квантов. Плотность определяется пересчетом по градуировочной зависимости в соответствии с ГОСТ 23061, регламентирующим выполнение градуировки.
5.5.3. ННМ основан на эффекте замедления быстрых нейтронов на атомах водорода и заключается в регистрации потока замедленных надтепловых и тепловых нейтронов. В методе используется плутониево-бериллиевый источник быстрых нейтронов и гелиевый или сцинтилляционный счетчик в качестве детектора медленных нейтронов. Методика, требования к соблюдению мер безопасности при работе и к градуировке приборов регламентируются ГОСТ 23061.
5.5.4. Метод естественной радиоактивности для определения глинистости дисперсных пород основан на зависимости естественного гамма-излучения от содержания глинистой фракции в породах. Для расчета содержания глинистой фракции
используются корреляционные связи интенсивности естественного гамма-излучения с величиной
. Естественная радиоактивность измеряется в соответствии с ГОСТ 25260*.
5.5.5. Метод протонного магнитного резонанса (ПМР) основан на возбуждении осциллирующего суммарного магнитного момента протонов и последующего детектирования электромагнитного поля, создаваемого этим осциллирующим магнитным моментом. В процессе работы антенной больших размеров создается импульсное магнитное поле внутри исследуемого объема. Частота заполнения импульса выбирается равной частоте прецессии магнитных моментов протонов вокруг магнитного поля Земли. Измерение наведенного прецессирующего магнитного момента после окончания действия возбуждающего магнитного поля осуществляется той же антенной. Основным носителем протонов в грунте является вода, поэтому метод рассчитан на детектирование воды.
Сигналы от различных слоев воды, различающихся по глубине и времени релаксации, складываются друг с другом в интегральном выражении. Распределение влажности по глубине определяется специальной обработкой получаемых материалов. Метод позволяет оценивать количество воды в пределах цилиндра глубиной D и диаметром 2D, где D - диаметр антенны.
5.6. Газово-эманационные методы
5.6.1. Газово-эманационные методы используются для определения уровня содержания радиоактивных газов - радона, торона и их соотношения, а также содержания газов
в подпочвенном воздухе. В зависимости от стадии проектирования и задач инженерных изысканий проводится профильная или площадная съемка в модификации эманационных (радон-тороновых) или совместных (газово-эманационных) измерений. Отбор проб подпочвенного воздуха в зависимости от масштаба съемки и стадии (этапа) проектирования выполняется по сетке от 5 м х 5 м до 20 м х 20 м.
5.6.2. На основе анализа материалов газово-эманационной съемки, рассматриваемых в совокупности с геологическими и другими геофизическими данными, проводится структурно-геодинамическое картирование. Выделяются устойчивые блоки пород, геодинамические зоны с различным уровнем активности, связанной с разрывной тектоникой, трещиноватостью и участками перераспределения напряжений в массиве пород и грунтов, обусловленными протекающими естественными геологическими процессами и техногенной нагрузкой.
5.6.3. Газово-эманационная съемка может проводиться в режиме повторения измерений с выбранными периодами с целью мониторинга отслеживаемых процессов.
5.7. Термометрия
5.7.1. Термометрия основана на изучении температурного поля грунтов. Информация, полученная с ее помощью, используется при интерпретации геофизических данных (особенно в районах распространения мерзлых грунтов, где ее применение является обязательным). Кроме того, результаты измерения температуры в грунтовом массиве или в толще воды могут использоваться для решения инженерно-геологических и гидрогеологических задач, таких, как:
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 |



