Тренировочное задание
1.11. Какое количество информации несет сообщение, если оно указывает на одно из 32 равновероятных событий?
ТЕМА 2. СТРУКТУРА АВТОМАТИЗИРОВАННЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И СИСТЕМ УПРАВЛЕНИЯ
Толковый словарь по информатике дает следующее определение информационной технологии. Информационная технология — это совокупность методов, производственных процессов и программно-технических средств, объединенных в технологическую цепочку, обеспечивающую сбор, хранение, обработку, вывод и распространение информации для снижения трудоемкости процессов использования информационных ресурсов, повышения их надежности и оперативности.
Как отмечалось, не имеет смысла говорить о полезной информации, содержащейся в сигнале, если не указана задача. Целесообразность применения компьютера для обработки информации также может быть обусловлена только задачей или задачной ситуацией, т. е. конкретной ситуацией предметной области, для которой необходимо выработать управленческое решение. В бизнесе применение компьютера состоит в идентификации задачных ситуаций, их классификации и использовании для их решения общих средств (технических и программных), которые называются технологиями. Технология - это правила действия с использованием каких-либо средств, которые являются общими для целой совокупности задач или задачных ситуаций. Если реализация технологии направлена на выработку управляющего воздействия, то это технология управления.
Состав информационной технологии управления
Для информатизации общества и бизнеса необходим широкий спектр программно-аппаратных средств, в том числе вычислительной техники и средств связи. Различные технические средства обеспечивают прием и передачу трех основных видов информации (речь, печатный текст, графика) в статике и динамике с максимальным использованием трех чувств восприятия человека (слух, осязание, зрение). Напрямую с человеком связаны относительно громоздкие устройства, обеспечивающие согласование разнообразных человеко-машинных входных и выходных потоков информации (дисплеи) клавиатуры, «мыши», джойстики и иные манипуляторы и многое другое, включая электронные планшеты и табло). Технические средства связи обеспечивают передачу информации во внешней деловой среде. При этом в системе связи используются не только «чистые» устройства связи, но и информационно-коммуникационные компьютеры. На деловом предприятии в зависимости от масштаба и особенностей предпринимательства может использоваться от одного до нескольких тысяч компьютеров для хранения и обработки информации.
Программные средства обеспечивают обработку данных и состоят из общего и прикладного программного обеспечения и программных документов, необходимых для эксплуатации этих программ. К общему программному обеспечению относят операционные системы, системы программирования и программы технического обслуживания, которые предоставляют сервис для эксплуатации компьютера, выявления ошибок при сбоях, восстановления испорченных программ и данных. Прикладное программное обеспечение определяет разнообразие информационных технологий и состоит из отдельных прикладных программ или пакетов, называемых приложениями. Ряд приложений могут применять все пользователи, а применение некоторых приложений требует определенного уровня квалификации проектировщика.
Разнообразие технических средств и операционных систем вынудили разработчиков ввести понятие платформы. Платформа определяет тип компьютера и операционной системы, на которых можно установить используемую информационную технологию. Практика показывает, что эволюция программно-аппаратного комплекса идет непрерывно по мере повышения квалификации и уровня знаний тех, кто реально использует эти средства. Модульность программно-аппаратных средств - ключ к эволюционному развитию систем. Международные организации и крупные фирмы в области информатики предлагают де-юре и де-факто стандарты на аппаратные и программные интерфейсы.
Интерфейс — это технология общения с компьютером и взаимодействия частей компьютера. Иными словами, это сопряжение частей средств информатики [информации (данных), программ, аппаратуры], в котором все информационные, логические, физические и электрические параметры отвечают установленным стандартам. И именно через стандартизацию интерфейсов обеспечивается совместимость специалиста-функционера с компьютером, т. е. через стандарты интерфейса специалист-функционер может выполнять с помощью компьютера определенные действия (определенную технологию) по превращению данных в информацию. Таким образом, информационно-командная среда представляет собой совокупность программного и информационного обеспечения и определенного стандарта интерфейса.
Предметом изучения данной дисциплины являются автоматизированные информационные технологии управления (АИТУ). В АИТУ поступает информация, которая перерабатывается, и полученные результаты также представляются в виде информации. При создании единой системы обработки информации проектировщик обязан стремиться обеспечить целостность системы, используя для этого специальные системообразующие компоненты. Свойство целостности состоит и создании новых функций, присущих системе, в формировании новых знаний. Преодоление организованной сложности (присущей любой системе) состоит в упрощении, оптимизации и многоуровневом и многоаспектном моделировании. При этом не следует забывать о свойстве целостности, так как каждый специалист-функционер создает свою аспектную модель (бухгалтер — одну, технолог - другую и т. п.).
Под автоматизированной информационной технологией управления понимается система методов и способов сбора, накопления, хранения, поиска, обработки и защиты управленческой информации на основе применения развитого программного обеспечения, средств вычислительной техники и связи, а также способов, с помощью которых эта информация предоставляется пользователям.
Свойства, структура и классификация автоматизированных информационных технологий управления
Применение автоматизированных информационных технологий управления позволило представить в формализованном виде, пригодном для практического использования, концентрированное выражение научных знаний и практического опыта для реализации и организации социальных процессов. При этом предполагается экономия затрат труда, времени и других материальных ресурсов, необходимых для осуществления этих процессов. Поэтому АИТУ играют важную стратегическую роль, которая постоянно возрастает. Это объясняется рядом свойств, присущих автоматизированным информационным технологиям, которые:
· позволяют активизировать и эффективно использовать информационные ресурсы общества, что экономит другие виды ресурсов;
· реализуют наиболее важные, интеллектуальные функции социальных и экономических процессов;
· позволяют оптимизировать и во многих случаях автоматизировать информационные процессы в период становления информационного общества;
· обеспечивают информационное взаимодействие людей, что способствует распространению массовой информации. Информационные технологии быстро ассимилируются культурой общества, снимают многие социальные, бытовые и производственные проблемы, расширяют внутренние и международные экономические и культурные связи, влияют на миграцию населения по планете;
· занимают центральное место в процессе интеллектуализации общества, развитии системы образования, культуры и новых (экранных) форм искусства, популяризации шедевров мировой культуры и истории развития человечества;
· играют ключевую роль в процессах получения, накопления, распространения новых знаний;
· позволяют реализовать методы информационного моделирования глобальных процессов, что обеспечивает возможность прогнозирования многих природных ситуаций в регионах повышенной социальной и политической напряженности, экологических катастроф, крупных технологических аварий.
Структура конкретной автоматизированной информационной технологии управления для своей реализации предполагает наличие трех компонент:
· комплекса технических средств, состоящего из средств вычислительной, коммуникационной и организационной техники;
· системы программных средств, состоящей из системного (общего) и прикладного программного обеспечения;
· системы организационно-методического обеспечения, включающей инструктивные и нормативно-методические материалы по организации работы управленческого и технического персонала в рамках конкретной АИТУ обеспечения управленческой деятельности.
Структура АИТУ может быть представлена следующей обобщенной схемой (рис. 2.1).

Автоматизированные информационные технологии по способу реализации в автоматизированной информационной системе делятся на традиционные и новые. Традиционные АИТУ существовали в условиях централизованной обработки данных и до массового использования персональных компьютеров были ориентированы главным образом на снижение трудоемкости процессов формирования регулярной отчетности. Новые информационные технологии связаны с информационным обеспечением процесса управления в режиме реального времени.
Новая информационная технология — это технология, которая основывается на применении компьютеров, активном участии пользователей (непрофессионалов в области программирования) в информационном процессе, высоком уровне дружественного пользовательского интерфейса, широком применении пакетов прикладных программ общего и проблемного направления, использовании режима реального времени и доступа пользователя к удаленным базам данных и программам благодаря вычислительным сетям ЭВМ.
По степени охвата задач управления автоматизированные информационные технологии подразделяются на следующие группы:
· электронная обработка данных;
· автоматизация функций управления;
· поддержка принятия решений;
· электронный офис;
· экспертная поддержка.
По классу реализуемых технологических операций АИТУ можно разделить на:
· системы с текстовым редактором;
· системы с табличным процессором;
· системы управления базами данных;
· системы с графическими объектами;
· мультимедийные системы;
· гипертекстовые системы.
По типу пользовательского интерфейса автоматизированные информационные технологии делятся на:
· пакетные (централизованная обработка);
· диалоговые;
· сетевые (многопользовательские).
По способу построения сети АИТУ можно разделить на: » локальные; « многоуровневые; « распределенные.
По обслуживаемым предметным областям автоматизированные информационные технологии подразделяются на технологии:
· банковской деятельности;
· налоговой деятельности;
· страховой деятельности и т. д.
Во многоуровневых и распределенных АИТУ одинаково успешно могут быть решены как проблемы оперативной работы с информацией, так и проблемы анализа экономических ситуаций при выработке и принятии управленческих решений. Потребность в аналитической работе при переходе к рынку, в условиях образования новых организационных структур, функционирующих на основе различных форм собственности, неизмеримо возрастает. Эта задача решается путем совершенствования интегрированной обработки информации, когда новая информационная технология начинает включать в работу базы знаний.
В связи с бурным развитием телекоммуникационного сервиса и возможностью доступа к удаленным информационным ресурсам всех стран и континентов произошло смещение акцентов в формулировании критериев эффективности автоматизированных систем и технологий. Если в условиях административно-командной системы основной упор делался на выявление затрат на машинную обработку информации, то в настоящее время актуальны прежде всего:
· оперативное принятие решений;
· степень адекватности аналитических данных реальным процессам;
· возможность использования экономико-математических методов и моделей для анализа конкретных финансово-производственных ситуаций.
Такая постановка вопросов привносит в практику предпринимательства и хозяйствования научно-исследовательский аспект, требует новых научно обоснованных решений, подходов и квалифицированных кадров.
Зарубежные специалисты выделяют пять основных тенденций развития информационных технологий управления:
· к изменению характеристик информационного продукта, который все больше превращается в гибрид между результатом расчетно-аналитической работы и специфической услугой, предоставляемой индивидуальному пользователю персонального компьютера;
· к параллельному взаимодействию логических АИТУ, совмещению всех типов информации (текста, графики, цифр, звуков) с ориентацией на одновременное восприятие человеком посредством органов чувств;
· к ликвидации всех промежуточных звеньев на пути от источника информации к ее потребителю (например, становится возможным непосредственное общение автора и читателя, продавца и покупателя, певца и слушателя, ученых между собой, преподавателя и обучающегося, специалистов через систему видеоконференций, электронную почту и т. п.);
· к глобализации информационных технологий в результате использования спутниковой связи и всемирной сети Internet, благодаря чему люди смогут общаться между собой и с общей базой данных, находясь в любой точке планеты (ведущая тенденция);
· к конвергенции, рассматриваемой как последняя черта современного процесса развития АИТУ, которая заключается в стирании различий между сферами материального производства и информационного бизнеса, в максимальной диверсификации деятельности фирм, взаимопроникновении различных отраслей промышленности, финансового сектора и сферы услуг.
Тесты и тренировочные задания
Тесты*
* Для выполнения тестов выберите правильный ответ из предложенных вариантов,
2.1. Новая информационная технология предоставляет возможность для:
а) управления процессом в режиме реального времени;
б) снижения трудоемкости при формировании регулярной отчетности.
2.2. Новая информационная технология — это технология, которая основывается:
а) на применении компьютеров;
б) на активном участии пользователей (непрофессионалов в области программирования) в информационном процессе;
в) на высоком уровне дружественного пользовательского интерфейса;
г) на широком применении пакетов прикладных программ общего и проблемного направления;
д) на использовании режима реального времени;
е) на доступе пользователя к удаленным базам данных и программам благодаря вычислительным сетям ЭВМ;
ж) на всех перечисленных выше факторах (а + б + в + г + д + е).
2.3. Платформа определяет:
а) тип компьютера, на котором можно установить используемую информационную технологию;
б) тип операционной системы, которая позволит использовать информационную технологию;
в) совокупность обоих факторов (а + б).
2.4. Интерфейс - это:
а) международное лицо;
б) технология взаимодействия;
в) межличностные отношения.
2.5. Критерии эффективности автоматизированных технологий в настоящее время формулируются как:
а) выявление затрат на машинную обработку информации;
б) оперативное принятие решений;
в) степень адекватности аналитических данных реальным процессам;
г) возможность использования экономико-математических методов и моделей для анализа конкретных финансово-производственных ситуаций;
д) совокупность первых трех факторов (а + б + в);
е) совокупность факторов со второго по четвертый (б + в + г).
Тренировочное задание
2.6. Опишите структуру конкретной автоматизированной информационной технологии управления.
ТЕМА 3. НАПРАВЛЕНИЯ АВТОМАТИЗАЦИИ УПРАВЛЕНЧЕСКОЙ ДЕЯТЕЛЬНОСТИ
Этапы развития информационных систем управления в России
В своем развитии человечество прошло путь длиною в несколько десятков тысячелетий. Большую часть исторического пути люди имели дело с материальными объектами. Все это время человек учился преобразовывать энергию и материальные объекты и информационные технологии путем регистрации и накопления информационных образов. Началом развития информационных технологий можно считать пещерную и наскальную живопись, счет, появление искусства, письменности. Материальными носителями информации были камни, кости, дерево, глина, папирус, шелк, бумага.
В древности информационная технология заключалась в передаче знаний и профессиональных навыков по наследству - от отца к сыну. Доступ к знаниям и информации был ограничен, поэтому знания не могли существенно влиять на производственный процесс. Обработка данных велась вручную. Производство было ремесленным, индивидуальным и мелкосерийным. Появление первого печатного станка и книгопечатания (1445 г.) произвело первую информационную революцию, которая длилась примерно 500 лет. Знания стали тиражироваться. Они уже могли влиять на производство. Появились станки, паровые машины, фотография, телеграф, радио.
1946 г. — начало эры электронно-вычислительных машин (ЭВМ). Впервые был создан способ записи и долговременного хранения формализованных знаний, при котором эти знания могли непосредственно влиять на режим работы производственного оборудования. Процесс записи ранее формализованных профессиональных знаний в форме, готовой для непосредственного воздействия на машины и механизмы, получил название программирования на ЭВМ.
С момента появления первой ЭВМ развитие автоматизированных информационных технологий прошло ряд этапов. С конца 1950-х до начала 1960-х годов эксплуатировались ЭВМ первого и второго поколения для решения отдельных расчетных (инженерных) и наиболее простых, но трудоемких экономических задач (например, материального учета). Тип используемой автоматизированной информационной технологии можно назвать частичной электронной обработкой данных.
С 1960-х до начала 1970-х годов в круг работ, выполняемых с помощью ЭВМ, входила электронная обработка плановой и текущей информации, хранение в памяти ЭВМ нормативно-справочных данных, выдача машинограмм на бумажных носителях. Если говорить о типе автоматизированной информационной технологии, то ее можно назвать электронная система обработки данных (ЭСОД).
В 1970-х годах используются ЭВМ третьего поколения для обработки информации на всех этапах управления деятельностью предприятия, осуществляется переход к разработке подсистем автоматизированных систем управления (АСУ) (материально-технического снабжения, товародвижения, контроля запасов и транспортных перевозок, учета реализации готовой продукции и т. д.). Тип используемой в то время АИТУ можно назвать централизованной автоматизированной обработкой информации в условиях вычислительных центров (ВЦ) коллективного пользования.
В конце 1970-х годов был сконструирован персональный компьютер (ПК) - инструмент, позволивший формализовать и сделать широкодоступными для автоматизации многие из трудноформализуемых процессов человеческой деятельности и открывший эру новой информационной технологии, отличительной чертой которой является диалоговый режим работы в масштабе реального времени.
С 1980 г. наблюдается тенденция к децентрализации обработки данных, к решению задач в многопользовательском режиме и широкое применение автоматизированных систем управления технологическими процессами (АСУ ТП), систем автоматизированного проектирования (САПР), производственных, отраслевых и общегосударственных АСУ. Тип используемой АИТУ можно отнести к специализации технологических решений на базе мини-ЭВМ, персональных компьютеров и удаленного доступа к массивам данных с одновременной универсализацией способов обработки информации на базе мощных супер-ЭВМ.
Совокупность научных методов и технологических приемов, ориентированных на обработку данных с помощью ЭВМ, стали называть информатикой. Появились наукоемкие изделия, в себестоимости которых затраты на научные исследования составляли до 5%, а в производстве ЭВМ — 10—20%. И хотя производство стало крупносерийным, изделия стандартизировались и темпы роста производства повышались, номенклатура выпускаемых изделий расширялась медленно.
Последний этап (с конца 1980-х годов по настоящее время) характеризуется применением ЭВМ пятого поколения, а также широким кругом возможностей и решаемых задач:
· комплексным решением экономических задач;
· объектно-ориентированным подходом в зависимости от системных характеристик предметной области;
· широким спектром приложений;
· сетевой организацией информационных структур;
· преобладанием интерактивного взаимодействия пользователя в ходе эксплуатации вычислительной техники;
· реализацией интеллектуального человеко-машинного интерфейса;
· реализацией систем поддержки принятия решений и информационно-советующих систем.
Тип АИТУ можно определить как новую информационную технологию, сочетающую средства вычислительной техники, связи и современной оргтехники для обеспечения интерактивного взаимодействия пользователя и машины.
Информационная пирамида
Содержание каждой конкретной информации определяется потребностями управленческих звеньев и вырабатываемых управленческих решений. Управление - это целенаправленная деятельность, использующая главным образом информационный поток. На рис. 3.1 представлена информационная пирамида, отражающая информативность данных и характеризующая степень удовлетворения потребностей в информации различных уровней системы управления.
В условиях директивного планирования информационная система не предоставляла нужную информацию ни для оперативного, ни для концептуального управления предприятием. Она лишь фиксировала и анализировала (и то с опозданием) в основном прошедшие события, откликаясь на требования бухгалтерского учета, контроля за выполнением плана и централизованной статистики. Однако и тогда имелись немногочисленные предприятия, связанные с западными рынками. Философия их информационных систем была совершенно иной - близкой или идентичной философии рынка.
Созданные в условиях централизованного планирования информационные системы позволяли лишь отслеживать ход производства, но не давали необходимой информации для динамичного развития предприятия. Так, эти системы не пригодны для анализа ценообразования и причин изменения цен, инновационных процессов, развития рынка, стратегии конкуренции и т. п. Получение такой информации связано с большими затратами труда, ее обработка очень сложна и требует глубокого анализа. Качество получаемых результатов не гарантировано, хотя они важны для развития предприятия.

Происходящие изменения в современном обществе вызывают необходимость совершенствования систем управления, переключения основного внимания с оперативного на стратегическое управление, ориентированное в будущее. Это соответствует перемещению центра тяжести к вершине информационной пирамиды.
Основные направления развития автоматизации управления
Как уже отмечалось в курсе информатики, в настоящее время сложилось два направления автоматизации управленческой деятельности, связанных с применением автоматических и автоматизированных систем. Они различаются характером объектов управления: если в первом случае объектами управления являются технологические процессы и работа оборудования и человек не принимает участия в процессе управления, то во втором - коллективы людей, занятых в сфере материального производства и сфере обслуживания, где роль человека остается определяющей.
В зависимости от роли человека в процессе управления, форм связи и функционирования звена «человек—машина», распределения информационных и управляющих функций между оператором и ЭВМ; между ЭВМ и средствами контроля и управления все технологии можно разделить на информационные и управляющие. Информационные технологии, обеспечивающие сбор и выдачу в удобном для обозрений виде измерительную информацию о ходе технологического или производственного процесса, в результате соответствующих расчетов определяют, какие управляющие воздействия следует произвести, чтобы управляемый процесс протекал наилучшим образом. Выработанная управляющая информация служит рекомендацией оператору, причем основная роль принадлежит человеку, а машина играет вспомогательную роль, выдавая для него необходимую информацию.
Информационные технологии должны, с одной стороны, представлять отчеты о нормальном ходе производственного процесса и, с другой — информацию о ситуациях, вызванных любыми отклонениями от нормального процесса. Различают два вида информационных технологий:
· информационно-справочные (пассивные), которые поставляют информацию оператору после его связи с системой по соответствующему запросу. В них ЭВМ необходима только для сбора и обработки информации об управляемом объекте. На основе информации, переработанной ЭВМ и представленной в удобной для восприятия форме, оператор принимает решения относительно способа управления объектом. ЭВМ предоставляет широкие возможности для математической обработки данных (сравнение текущих значений параметров с их максимально и минимально допустимыми значениями, прогнозирование характера изменения контролируемых параметров). В математическое обеспечение ЭВМ входят библиотека рабочих программ, каждая из которых выполняет одну или несколько функций централизованного контроля, и программа-диспетчер, выбирающая для выполнения ту или иную рабочую программу. Общение между оператором и ЭВМ ведется в режиме «запрос—ответ».
· информационно-советующие (активные), которые сами выдают абоненту предназначенную для него информацию периодически или через определенные промежутки времени. В этих системах наряду со сбором и обработкой информации выполняются следующие функции: определение рационального технологического режима функционирования по отдельным технологическим параметрам процесса, определение управляющих воздействий по всем или отдельным управляемым параметрам процесса и т. п.
Эти технологии применяют в тех случаях, когда требуется осторожный подход крещениям, выработанным формальными методами. Это связано с неопределенностью в математическом описании управляемого процесса: математическая модель недостаточно полно описывает технологический (производственный) процесс, так как учитывает лишь часть управляющих и управляемых параметров; математическая модель адекватна управляемому процессу лишь в узком интервале технологических параметров; критерии управления носят качественный характер и существенно изменяются в зависимости от большого числа внешних факторов. Неопределенность описания может быть связана с недостаточной изученностью технологического процесса, и реализация адекватной модели потребует применения дорогостоящей ЭВМ. При большом разнообразии и объеме дополнительных данных общение оператора с ЭВМ строится в виде диалога.
Промежуточным классом между информационной и управляющей технологиями можно считать информационно-управляющую систему, которая предоставляет оператору достоверную информацию о прошлом, настоящем и будущем состоянии производственной системы. Следовательно, кроме программ сбора и обработки производственной информации необходима реализация ряда дополнительных программ статистики, прогнозирования, моделирования, планирования и др.
Управляющая технология осуществляет функции управления по определенным программам, заранее предусматривающим действия, которые должны быть предприняты в той или иной производственной ситуации. За человеком остается общий контроль или вмешательство в тех случаях, когда возникают непредвиденные алгоритмами управления обстоятельства.
В сфере промышленного производства с позиций управления можно выделить следующие основные классы структур автоматизированных информационных технологий: децентрализованную, централизованную, централизованную рассредоточенную и иерархическую. Использование технологии с децентрализованной структурой эффективно при автоматизации технологически не зависимых объектов управления по материальным, энергетическим, информационным и другим ресурсам. Такая технология представляет собой совокупность нескольких независимых систем со своей информационной и алгоритмической базой. Для выработки управляющего воздействия на каждый объект управления необходима информация о состоянии только этого объекта.
Централизованная структура осуществляет реализацию всех процессов управления объектами в едином органе управления, который осуществляет сбор и обработку информации об управляемых объектах и на основе их анализа в соответствии с критериями системы вырабатывает управляющие сигналы.
Основная особенность централизованной рассредоточенной структуры — сохранение принципа централизованного управления, т. е. выработка управляющих воздействий на каждый объект управления на основе информации о состоянии совокупности объектов управления. Некоторые функциональные устройства технологии управления являются общими для всех каналов системы. Алгоритм управления в данном случае состоит из совокупности взаимосвязанных алгоритмов управления объектами, которые реализуются совокупностью взаимосвязанных органов управления. Для реализации функции управления каждый локальный орган по мере необходимости вступает в процесс информационного взаимодействия с другими органами управления.
С ростом числа задач управления в сложных системах значительно увеличивается объем переработанной информации и повышается сложность алгоритмов управления. В результате осуществлять управление централизованно невозможно, так как имеет место несоответствие между сложностью управляемого объекта и способностью любого управляющего органа получать и перерабатывать информацию. Кроме того, в таких АИТУ можно выделить следующие группы задач, каждая из которых характеризуется соответствующими требованиями по времени реакции на события, происходящие в управляемом процессе:
· задачи сбора данных с объекта управления (время реакции — секунды, доли секунды);
· задачи экстремального управления, связанные с расчетами желаемых параметров управляемого процесса (время реакции — секунды, минуты);
· задачи оптимизации и адаптивного управления процессами (время реакции — несколько секунд);
· информационные задачи, задачи диспетчеризации и координации в масштабах цеха или предприятия, задачи планирования и др. (время реакции — часы).
Очевидно, что иерархия задач управления приводит к необходимости создания иерархической системы средств управления. Такое разделение, позволяя справиться с информационными трудностями для каждого местного органа управления, порождает необходимость согласования принимаемых этими органами решений, т. е. создания над ними нового управляющего органа. Кроме того, многие производственные структуры имеют собственную иерархию. Чаще всего иерархическая структура объекта управления не совпадает с иерархией системы управления. Следовательно, по мере усложнения систем выстраивается иерархическая пирамида управления.
В многоуровневой иерархической системе управления (например, гибкой производственной системой) выделяют обычно три уровня: уровень управления работой оборудования и технологическими процессами, уровень оперативного управления ходом производственного процесса и уровень планирования работ. В функции низшего уровня входят:
· сбор и обработка информации и непосредственное управление работой оборудования и технологическими процессами с учетом команд, поступающих с вышестоящего уровни;
· фиксация времени простоя оборудования с учетом причин простоя;
· контроль за состоянием инструмента и учет его использования; учет числа обработанных деталей;
· передача информации на уровень оперативного управления.
Функциями уровня оперативного управления ходом производственного процесса являются:
· анализ наличия ресурсов для выполнения сформированных заданий;
· оперативная корректировка режимов отдельных технологических процессов и выдача заданий по коррекции технических устройств низшего уровня; контроль качества изделий;
· прием и систематизация информации с управляющих устройств низшего уровня;
· координация работы всех элементов системы в соответствии с полученным заданием; передача информации на верхний уровень управления.
Функциями уровня планирования работ являются:
· решение комплекса задач, связанных с управлением и контролем за работой уровня оперативного управления;
· управление библиотекой управляющих программ для оборудования и технологических процессов;
· сбор, обработка и выдача информации о ходе производственного процесса в системе.
Комплексная автоматизация охватывает проектирование и производство изделий и обеспечивается совокупностью автоматизированных систем. В эту совокупность входят автоматизированные системы научных исследований (АСНИ), системы автоматизированного проектирования (САПР), автоматизированные системы технологической подготовки производства (АСУПП), автоматизированные системы управления технологическими процессами (АСУ ТП), автоматизированные системы управления производством (АСУП) и автоматизированные информационные технологии управления гибкой производственной системой (АИТУ ГПС).
Автоматизированные системы управления технологическими процессами (АСУ ТП)
В наиболее общем случае автоматизированная система управления технологическими процессами (АСУ ТП) представляет собой замкнутую систему, обеспечивающую автоматизированный сбор и обработку информации, необходимой для оптимизации управления технологическим объектом в соответствии с принятым критерием, и реализацию управляющих воздействий на технологический объект. Технологический объект управления — это совокупность технологического оборудования и реализованного на нем (по соответствующим алгоритмам и регламентам) технологического процесса. В зависимости от уровня АСУ ТП технологическим объектом управления могут быть технологические агрегаты и установки, группы станков, отдельные производства (цехи, участки), реализующие самостоятельный технологический процесс.
Современные технологические процессы постоянно усложняются, а агрегаты, реализующие их, становятся все более мощными. Например, в энергетике действуют энергоблоки мощностью МВт, установки первичной переработки нефти пропускают до 6 млн. т сырья в год, работают доменные печи объемом 3,5-5 тыс. м3, создаются гибко перестраиваемые производственные системы. Человек не может уследить за работой таких агрегатов и технологических комплексов, и тогда на помощь ему приходит АСУ ТП. В АСУ ТП, которые дают наибольший социальный и экономический эффект, за работой технологического комплекса следят многочисленные датчики-приборы, изменяющие параметры технологического процесса (например, температуру и толщину прокатываемого металлического листа), контролирующие состояние оборудования (например, температуру подшипников турбины) или определяющие состав исходных материалов и готового продукта. Таких приборов в одной системе может быть от нескольких десятков до нескольких тысяч.
Датчики постоянно выдают сигналы, меняющиеся в соответствии с измеряемым параметром (аналоговые сигналы), в устройство связи с объектом (УСО) компьютера. В УСО сигналы преобразуются в цифровую форму и затем по определенной программе обрабатываются вычислительной машиной. Компьютер сравнивает полученную от датчиков информацию с заданными результатами работы агрегата и вырабатывает управляющие сигналы, которые через другую часть УСО поступают на регулирующие органы агрегата. Например, если датчики подали сигнал, что лист прокатного стана выходит толще, чем предписано, то ЭВМ вычислит, на какое расстояние нужно сдвинуть валки прокатного стана и подаст соответствующий сигнал на исполнительный механизм, который переместит валки на требуемое расстояние.
Реализация целей в конкретных АСУ ТП достигается выполнением в них определенной последовательности операций и вычислительных процедур, в значительной степени типовых по своему составу и потому объединяемых в комплекс типовых функций:
· измерение физических сигналов, параметров;
· контроль функционирования технических и программных средств;
· формирование заданий на управление;
· реализация управления и т. д.
Функции АСУ ТП подразделяются на управляющие, информационные и вспомогательные. К управляющим функциям относятся регулирование (стабилизация) отдельных технологических переменных, логическое управление операциями или аппаратами, адаптивное управление объектом в целом (например, управление участком станков с ЧПУ, оперативная коррекция суточных и сменных плановых заданий и др.). Информационные функции — это функции системы, содержанием которых является сбор, обработка и представление информации для последующей обработки. Вспомогательные функции, состоят в обеспечении контроля за состоянием функционирования технических и программных средств системы.
Каждый этап развития технических средств производства характеризуется определенным уровнем развития технологии. В свою очередь, каждый уровень развития технологии определяет соответствующий уровень автоматизации технологических и производственных процессов, реализуемых системой управления.
Автоматизированная система управления технологическими процессами как компонент общей системы управления промышленным предприятием предназначена для целенаправленного ведения технологических процессов и обеспечения смежных и вышестоящих систем управления оперативной и достоверной информацией. Такие системы, созданные для объектов основного и вспомогательного производства, представляют низовой уровень автоматизированной системы управления предприятием (АСУП).
Системы автоматизации проектирования (САПР)
Одним из основных условий технического прогресса является постоянное расширение и обновление номенклатуры выпускаемой продукции, а одним из главных требований к современному производству — обеспечение возможности проектирования, создания и освоения новой высококачественной продукции в кратчайшие сроки при минимальных затратах. Выполнение этих требований не возможно без крупномасштабной автоматизации на основе ЭВМ, для реализации которой необходим коренной пересмотр организационно-экономических и технологических характеристик производственной деятельности в направлении создания динамичных и интенсивных форм производства. Главной особенностью решения проблемы интенсификации является то, что проводится не интенсификация физического труда, которая практически исчерпала себя, а интенсификации практически неограниченного интеллектуального труда человека, использующего широкие возможности современных ЭВМ.
Основной стратегией по проведению крупных мероприятий по совершенствованию технической и технологической базы в промышленности, а также внедрению новых методов организации производства являются широкое использование систем автоматизированного проектирования во всех сферах проектирования и производства и создание промышленной робототехники и гибких автоматизированных производственных систем (АИТУ ГПС), в которых современные средства вычислительной техники занимают в функциональном отношении центральное место.
Успехи, достигнутые в последние годы в области микроэлектроники, открыли принципиально новые возможности для осуществления высокоэффективной автоматизации производственных процессов, проектно-конструкторских и научно-исследовательских работ. Широкое внедрение мини - и микро-ЭВМ с разнообразным современным периферийным оборудованием позволило создать системы распределенной обработки информации, на основе которых строятся интегрированные системы управления. Автоматизация проектирования входит неотъемлемой составной частью в приоритетные направления научно-технического прогресса. От успехов в создании и развитии САПР во многом зависят возможности и сроки разработки образцов новой техники, внедрение интегрированных автоматизированных производств, рост производительности труда инженерно-технических работников, занятых проектированием.
При построении новых объектов по заданному описанию несуществующего объекта выполняется его материализация в работоспособную надежную конструкцию. Проектирование — это процесс создания описания, необходимого для построения в задан ных условиях еще не существующего объекта, на основе первичного описания этого объекта. Процесс создания описания нового объекта может выполняться разными способами. Если весь процесс проектирования осуществляет человек, то проектирование называют неавтоматизированным. Проектирование, при котором происходит взаимодействие человека и ЭВМ, называют автоматизированным. Автоматизированное проектирование, как правило, осуществляется в режиме диалога человека с ЭВМ на основе применения специальных языков общения с ЭВМ.
При создании новых объектов выделяют следующие этапы:
· этап научно-исследовательских работ (НИР). Объединяет стадии: предпроектное исследование, техническое задание и часть технического предложения. Здесь проводят исследования по поиску новых принципов функционирования, новых структур, физических процессов, новой элементной базы, технических средств и т. п.;
· этап опытно-конструкторских работ (ОКР). Включает стадии: часть технического предложения, эскизный проект, технический проект. Здесь отражаются вопросы детальной конструкторской проработки проекта;
· этап рабочего проектирования. Объединяет стадии: рабочий проект, изготовление, отладка и испытание, ввод в действие. Здесь прорабатываются схемные, конструкторские и технологические решения, проводятся испытания, изготовление.
Распределение работ между подразделениями проводится с использованием блочно-иерархического подхода (БИП) к проектированию. Этот подход основан на структурировании описаний объекта с разделением описаний на ряд иерархических уровней по степени детальности отображения в них свойств объекта и его частей. Уровни проектирования можно выделять не только по степени подробности отражения свойств объекта, но и по характеру отражаемых свойств. Если в первом случае уровни называют горизонтальными, или иерархическими, то во втором — вертикальными, или аспектами.
Методология блочно-иерархического подхода базируется на трех концепциях: разбиение и локальная оптимизация; абстрагирование; повторяемость. Разбиение позволяет сложную задачу проектирования объекта свести к решению более простых задач с учетом взаимодействий между ними. Локальная оптимизация подразумевает улучшение параметров внутри каждой простой задачи. Абстрагирование заключается в построении формальных математических моделей, отражающих только значимые в данных условиях свойства объектов. Повторяемость заключается в использовании существующего опыта проектирования.
Система автоматизации проектных работ (САПР) — это организационно-техническая система, состоящая из комплекса средств автоматизации проектирования (который взаимосвязан с необходимыми подразделениями проектной организации или коллективом специалистов — пользователей системы) и выполняющая автоматизированное проектирование. Составными структурными частями САПР являются подсистемы, обладающие всеми свойствами систем и создаваемые как самостоятельные. Подсистемой САПР называют выделенную по некоторым признакам часть САПР, обеспечивающую получение законченных проектных решений.
По назначению подсистемы САПР разделяют на проектирующие и обслуживающие. К проектирующим относят подсистемы, выполняющие проектные процедуры и операции (например, подсистема логического проектирования, подсистема конструкторского проектирования, подсистема проектирования деталей и сборочных единиц и т. п.). К обслуживающим относят подсистемы, предназначенные для поддержания работоспособности проектирующих подсистем (например, подсистема информационного поиска, подсистема документирования и т. п.).
По отношению к объекту проектирования различают объектно-ориентированные (объектные) и объектно-независимые (инвариантные) подсистемы. К объектным относят подсистемы, выполняющие одну или несколько проектных процедур или операций, непосредственно зависимых от конкретного объекта проектирования. К инвариантным относят подсистемы, выполняющие унифицированные проектные процедуры и операции (например, функции отработки, не зависящие от особенностей проектируемого объекта). Подсистемы состоят из компонентов, объединенных общей для данной подсистемы целевой функцией и обеспечивающих функционирование этой подсистемы.
Основное назначение САПР — получение оптимальных проектных решений. Проектирование в САПР осуществляется путем декомпозиции проектной задачи с последующим синтезом общего проектного решения. В процессе синтеза проекта используются информационные ресурсы базы данных в'условиях диалогового взаимодействия проектировщиков с комплексом средств автоматизации. Технологии проектирования в САПР базируются на следующих принципах:
· использование комплексного моделирования;
· интерактивное взаимодействие с математической моделью;
· принятие проектных решений на основе математических моделей и проектных процедур, реализуемых средствами вычислительной техники;
· обеспечение единства модели проекта на всех этапах и стадиях проектирования;
· использование единой информационной базы для автоматизированных процедур синтеза и анализа проекта, а также для управления процессом проектирования;
· проведение многовариантного проектирования и комплексной оценки проекта с применением методов оптимизации;
· обеспечение максимальной инвариантности информационных ресурсов, их слабой зависимости от конкретной области применения, простоты настройки на отраслевую специфику.
Поскольку невозможно для ряда задач полностью автоматизировать процесс проектирования, актуальным является эффективное интерактивное общение пользователя с ЭВМ. В процессе проектирования наиважнейшими остаются задачи оптимизации (например, задача оптимального выбора структуры процесса проектирования или оптимизации проектного решения). Оптимальные решения можно выбирать разными путями, используя метод имитационного моделирования, векторные кривые оценки качества и т. п.
В большинстве САПР проект создается на основе типовых проектных процедур, типовых проектных решений, типовых элементов проекта. Этот подход полностью приемлем для систем управления, но при наличии хорошо организованной базы данных и интегрированной информационной основы. Таким образом, эффективность применения технологий САПР в системах управления определяется, прежде всего, степенью интеграции информационной основы.
Роль САПР в автоматизации производства не ограничивается функциями автоматизации конструирования и технологической подготовки производства. Не менее важная задача САПР — проектирование самих автоматизированных производств, включая проектирование робототехнических комплексов, технологического оборудования, их компоновку, размещение и т. п. Для этого в САПР должны быть мощные средства имитационного моделирования работы производственных линий, участков и цехов; средства синтеза и анализа объектов с физически разнородными элементами (роботами, манипуляторами, технологическими аппаратами; инструментальные средства проектирования программного обеспечения; средства разработки вычислительных сетей и др.).
Автоматизированная система управления производством (АСУП)
Автоматизированная система управления производством (АСУП) представляет собой сложную иерархически управляемую систему, состоящую из коллектива работников аппарата управления, комплекса технических средств, различных методик и инструментов, носителей данных. Как всякая сложная система, АСУП подразделяется на подсистемы, органическое взаимодействие которых при реализации задач управления обеспечивает достижение основной цели - оптимизации принятия решения.
Объектом управления является совокупность процессов, свойственных данному предприятию, по преобразованию ресурсов (материалов, полуфабрикатов, инструмента, оснастки, оборудования, энергетических, трудовых, финансовых и других ресурсов) в готовую продукцию. Сложность управления в АСУП обусловлена следующими причинами:
· большим числом разнородных элементов;
· высокой степенью их взаимосвязи в процессе производства;
· неопределенностью результатов выполнения многих процессов (брак, сбой, несвоевременные поставим, нерегулярность спроса и т. д;);
· объектами и субъектами управления являются люди, а управление их поведением не столь очевидно и прямолинейно;
· предприятие постоянно изменяется, т. е. является нестационарным.
Создание и внедрение АСУП привело к тому, что информационным процессам, их организации, проектированию, подготовке и выполнению уделяется такое же внимание, как и производственным. В структуре АСУП обычно выделяют функциональные и обеспечивающие подсистемы. Подсистемой называют часть автоматизированной системы управления, выделенную по функциональному или структурному признаку, отвечающему конкретным целям и задачам.
Системы, в которых управление ходом процесса осуществляется без вмешательства человека, называются автоматическими. Однако, когда не известны точные законы управления, человек вынужден брать управление (определение управляющих сигналов) на себя (такие системы называются автоматизированными). В этом случае ЭВМ представляет оператору всю необходимую информацию для управления технологическим процессом при помощи дисплеев, на которых данные могут высвечиваться в цифровом виде или в виде диаграмм, характеризующих ход процесса; могут быть представлены и технологические схемы объекта с указанием состояния его частей. ЭВМ может также «подсказать» оператору некоторые возможные решения.
Автоматизированная система управления гибкой производственной системой (АСУ ГПС)
Для ускорения темпов обновления продукции необходим переход от автоматизации отдельных элементов производственного процесса к комплексной автоматизации на всех уровнях, применению гибких производственных систем (ГПС) в условиях единичного, серийного и массового производства. Применение ГПС в промышленности позволяет разрешить противоречия между высокой производительностью и отсутствием мобильности оборудования для массового производства и высокой мобильностью и низкой производительностью универсальных станков единичного и серийного производства. Базой для решения этой сложной и противоречивой задачи явились особые свойства гибких производственных систем:
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 |



