Тема урока: «Решение квадратных уравнений»
Класс: 8
Цели урока:
Образовательные: отработка способов решения неполных квадратных уравнений;
формирование навыков решения квадратных уравнений по
формуле.
Развивающие: развитие логического мышления, памяти, внимания;
развитие обще-учебных умений, умения сравнивать и обобщать.
Воспитательные: воспитание трудолюбия, взаимопомощи, математической культуры.
Тип урока: совершенствование знаний, умений и навыков.
Оборудование: интерактивная доска Smartboard, программа Noteebook.
Ход урока: I. Актуализация.
Тема нашего урока «Решение квадратных уравнений». На данном уроке мы будем заниматься повторением способов решения квадратных уравнений.
Запутался Мишутка в решении квадратных уравнений и получил оценку «2». Ничем не могут ему помочь и его родители. Ребята, давайте поможем им разобраться с квадратными уравнениями.
Какие из данных уравнений являются квадратными?Какие из данных уравнений являются неполными квадратными уравнениями?
а) х2 + 2х – 9 =0, г) х2-3х+1=0,
б) 2х2+6х=0, д) 3х2-2х+10=0,
в) 7х2=0, е) 7х2-14х=0.
2. Вам представлены уравнения, которые определены по какому-то признаку.
Как вы думаете какое из уравнений этой группы является лишним?
а) 2х2-х=0, а) х2-5х+1=0,
б) х2-16=0, б) 9х2-6х+10=0,
в) 4х2+х-3=0, в) х2+3х-5=0,
г) 2х2=0. г) х2+2х+1=0.
3. Найдите корни уравнения:
а) (х-4)(х+5)=0, г) 4х2-9=0,
б) х(х+7)=0, д) 5х2=0.
в) х2-5х=0,
4. Решение неполных квадратных уравнений.
Рассыпались у Мишутки все решения уравнений, надо попробовать собрать правильное решение.
На доске написаны, в разном порядке, решения трёх уравнений. Учащимся предлагается выйти к доске и при помощи руки составить правильное решение каждого уравнения.
х2-25=0, х2-3х=0, х2+16=0,
(х-5)(х+5)=0, х(х-3)=0, х2=-16
х-5=0 или х+5=0 х=0 или х-3=0 Ответ: нет решений
х1=5 х2=-5 х=3
Ответ: х1=5, х2=-5. Ответ: х1=0, х2=3.
II. Практическая работа.
Давайте вспомним формулы решения полных квадратных уравнений.
На доске (за шторкой) написаны готовые формулы. После того, как дети называют
правильную формулу, шторка открывается.
ах2+bх+с=0
если b-четное число если b-нечетное число
k=b:2
D= b2-4ас D=k2-ас
х1=
, х1=
,
х2=
х2=![]()
если D>0, то уравнение имеет два корня
если D=0, то уравнение имеет один корень х=
или х=![]()
если D<0, то уравнение не имеет решения
1. Найдите дискриминант и определите число корней:
а) х2-5х+4=0,
б) 5х2-4х+1=0,
в) 4х2-4х+1=0.
2. Учащиеся работают самостоятельно в тетрадях, затем один ученик выходит к
доске и заполняет таблицу(используя возможности интерактивной доски):
Решить уравнение и вставить правильный ответ.
х2-5х=0 | |
3х2= - 96 | |
х2=256 | |
х2-11х+30=0 | |
х2-4х=45 | |
2х2-х+3=0 |
На доске представлен список ответов к уравнениям
нет решений,
-16, 16
0, 5
нет решений
-5, 9
5,6
3. Решить квадратное уравнение двумя способами(к доске выходят два ученика)
х2+8х+16=0
1 способ 2 способ
х2+8х+16=0, х2+8х+16=0,
(х+4)2=0, а=1, b=8, с=16
х+4=0, k=4
х= -4 D=k2-ac=0
x=
= -4
III. Итог урока
На протяжении всего урока мы с вами решали уравнения.
- А что такое уравнение? (уравнение - равенство двух выражений с переменной)
- Что называется корнем уравнения? (корень уравнения - значение переменной, при
котором уравнение обращается в верное
числовое равенство)
- Что значит решить уравнение? (решить уравнение- это значит найти все его корни
или доказать, что корней нет)
На втором уроке целесообразнее всего провести самостоятельную работу.
1 вариант 2 вариант
1) 2х2+3х-5=0, 1) 3х2+5х-2=0,
2) 3х2-27=0,х2=0,
3) х2+2х=0, 3) 3х-х2=0,
4) 21х2-5х+1=0, 4) х2+25=0,
5) х2+36=0, 5) 5х2-26х+5=0,
6) 4х2-28х+49=0 6) 2х2-5х+3=0
Проверь ответы:
1 вариант | 2 вариант |
-2,5; 1 | -2, |
-3;3 | -3, 3 |
-2; 0 | 0; 3 |
| нет решений |
нет решений |
|
3,5 | 1; 1,5 |



