Холодний Максим Віталійович
Національний аерокосмічний університет імені М. Є.Жуковського "Харківський авіаційний інститут"
Микро-ГТД
7.1. Авиация та космонавтика
Рисунки зменшені адміністрацією конкурсу, можуть бути надані в оригінальному розмірі на вимогу експерта.
Введение
Актуальность темы исследований. Миниатюризация бортовой аппаратуры, создание систем управления и целевой нагрузки с массой в сотни граммов, позволяет создавать беспилотные летательные аппараты (БЛА) со взлетным весом в единицы килограммов, оснащенного системами спутниковой навигации и радиосвязи, с возможностью действовать практически в любом районе земного шара в составе комплекса дистанционно-управляемой авиационной системы (ДУАС).
Одной из важнейших проблем при создании всепогодных БЛА является создание двигательной установки (ДУ), обеспечивающей, с одной стороны, высокую крейсерскую скорость полета БЛА, а с другой – достаточную продолжительность полета. Требования преодоления ветрового сноса, полета в условиях приземной турбулентности, оперативности получения информации выдвигают необходимость обеспечения крейсерской скорости полета на уровне М=0,5 и продолжительности полета не менее 30 мин.
Учитывая падение чисел Рейнольдса, а также рост площади, омываемой потоком, по отношению к объему и массе по мере уменьшения физических размеров ЛА, задача достижения высоких скоростей полета осложняется непропорциональным ростом потребной тяги при уменьшении размерности БЛА. Применение в качестве двигательной установки воздушно-реактивного двигателя (ВРД) открывает возможность обеспечения высоких скоростных характеристик, однако создание микро-ВРД традиционных схем с тягой до 50-200 H, пригодного для установки на сверхлегкий БЛА, наталкивается на значительные трудности, связанные прежде всего с масштабным вырождением рабочего процесса.
Таким образом, задача создания ВРД малых тяг (ВРД МТ) представляется актуальной.
Проблематикой создания воздушно-реактивных двигателей малых тяг на основе ТРД занимаются частные фирмы: Франции - Vibraye (JPX-t240…), Японии - Sophia-Precision (J-450…), Германии - JetCat (P-80…),Австрии - Schneidtr-Sanchez (FD-3). Перечисленные выше двигатели фирм предназначены для авиамоделей, но, по-видимому, за неимением лучшего, они применяются в гражданской и военной беспилотной авиации.
Несмотря на кажущуюся простоту конструкций микро-ГТД по сравнению с полноразмерными, их изготовление так же сопряжено с производсьвенными трудностями в связи с тем, что они содержат те же основные конструктивные элементы, что и полномасштабные аналоги: компрессор, сопловой аппарат, турбину (работающую при температуре свыше 700 градусов по шкале Цельсия и периферийных окружных скоростях 500 м/с).
При таких высоких значениях температур и окружных скоростей, в корневой части лопатки напряжения разрыва могут достигать 700 МПа и выше. Из чего можно сделать простой вывод: для изготовления турбин этих образцов ВРД использовались жаропрочные стали или сплавы - аналоги отечественных сталей: ХН62БМКТЮ с временным сопротивлением 520-550 МПа при рабочей температуре 700 градусов по Цельсию, ХН50ВМКТСР -540 МПа при 900 градусах, что и определяет высокую конечную стоимость ДУ.
В нашей стране ГТД малых тяг, пригодные для установки на БЛА с взлётной массой до 100кг, не производят.
Задачей исследования явилась разработка ДУ для БЛА на основе микро-ТРД.
При разработке в качестве аналога был выбран серийный двигатель фирмы АМТ-Olimpus с тягой 230Н и диаметром 130мм.

Таблица. Характеристики двигателя авторской разработки и серийного аналога
Характеристики | AMT Olympus | ТРД с ЦБК | ||||||||||||||||||||||||
|
|
|
По причине дороговизны и дефицитности выше перечисленных сталей было принято решение использовать доступные материалы и снизить максимальные окружные скорости с 475м/с (аналога) до 300м/с, что неминуемо при том же миделевом сечении ДУ, влекло за собой снижение расхода воздуха и, как следствие, при той же скорости истечения из сопла - снижение лобовой тяги.
В стремлении разработать двигатель с той же лобовой тягой, но с меньшими окружными скоростями на периферии лопаток турбины и на основании опыта создания полномасштабных ГТД с центробежным компрессором выбор был остановлен на двухстороннем центробежном компрессоре (ЦБК), что является новшеством в классе микро-ГТД. Это конструктивное решение позволяет удвоить расход воздуха без увеличения диаметра диффузора.
Новизна - состоит в новом конструктивно-технологическом решении, позволяющем максимально отехнологичить самый сложный узел ТРД с ЦБК - диффузор, и полностью отказаться от болтовых и сварных соединений (рис.3, 6).
Методами исследования являлись численное моделирование рабочих процессов в авиационных воздушно-реактивных двигателях [2] на основе комплексных моделей рабочего процесса и проведение натурных испытаний работоспособного образца ГТД.

Сборка ротора: кок, двухсторонний центробежный турбо-компрессор, вал, турбина.
Турбина – активно-реактивная осевая одноступенчатая со степенью реактивности 0,5.
Представлен один из вариантов диска, расчёт на прочность выполнялся с помощью пакета CosmosWorks – рис. 9.
3D модель турбины в сборе представлена на рис 10. Видны отдельные сегменты лопаточного венца. Один из трёх сегментов выделен тёмным тоном. Данная конструкция лопаточного венца позволяет, в отличие от цельнолитого, применить в различных зонах нагружения необходимые стали, что позволяет экономить материал. В зонах стыка сегментированного венца имеются деформационные швы, снижающие предварительные напряжения в диске. При отливке сегмента наблюдается практически полное отсутствие усадочных раковин, по сравнению с цельнолитым диском, в связи с меньшими относительными толщинами. Подобная конструкция турбины в микро-ГТД малых тяг разработана впервые.
Технологическая оснастка, использовавшаяся при изготовлении двигателя представлена на рис. 10-11. Отдельные стадии технологических процессов приведены на рис. 13.

Компрессор – одноступенчатый центробежный двухсторонний с колесом полуоткрытого типа.
Некоторые элементы технологического процесса изготовления турбокомпрессора рис. 15-18.

Камера сгорания – кольцевого типа, прямоточная. На рис.19,20.
Система питания – состоит из шестерёнчатого насоса – рис.21(а, в), топливопроводов и форсуночного блока – рис.22.
Шестерённый насос с плавающими втулками сам по себе стоит отдельного описания, не уступает промышленным образцам, используемым в автомобильной промышленности, обеспечивает перепад давлений до 1 МПа при расходе всего 20 мл/с, частота вращения 12000 об/мин.

Огневые испытания.
Рис.25. Испытания ГТД на огневом стенде. |
Рис.26. Испытательный стенд, общий вид.
|

Реализация проектных решений. Общий вид спроектированного микро-ГТД и отдельных его узлов представленных на рисунках. Все элементы конструкции выполнены лично автором статьи.
Удельная тяга. |
Удельный расход топлива |
Выводы. На сегодняшний день применение микро-ГТД на аппаратах с взлетным весом порядка 100 кг и выше представляется наиболее разумной перспективой. С уровнем тяг 200-300 Н микро-ГТД могут обеспечить высокие дозвуковые скорости полета БЛА легкого класса. С точки зрения массового совершенства двигательная установка с малоразмерным ГТД привлекательна. Низкий удельный вес микро-ГТД особенно ярко проявляется при небольшой продолжительности полета (до 30 мин.). При ограничении продолжительности полета до 15-20 мин. на основе микро-ГТД может быть создан высокоманевренный БЛА с тяговооруженностью более 0.5.
В этом контексте разработка автора статьи демонстрирует путь решения задач создания работоспособного образца микро – ГТД в условиях весьма ограниченных возможностей производственно – технологической базы.
Список использованных источников
1. . Теория авиационных двигателей. – Оборонгиз. –1958г.
2. . Численное моделирование теплофизических процессов в двигателестроению. –Харьков, ХАИ. –2005г.
3. , . Радиально-осевые турбины малой мощности. –Москва, Машгиз. –1963г.
4. . Воздушные микротурбины. – Москва, Машиностроение. –1970г.
5. , Боровский и расчёт агрегатов питания жидкостных ракетных двигателей. –Москва, Машиностроение. –1986г.
6. , . Испытания авиационных воздушно – реактивных двигателей. –Москва, Машиностроение. –1967г.
7. П., , и др. Гидростатические опоры роторов быстроходных машин. –Харьков, Основа. –1992г.
8. . Теория, расчёт и проектирование авиационных двигателей и энергетических установок. –Москва, Машиностроение. –2003г.
9. , . Расчёт турбин авиационных двигателей. –Москва, Машиностроение. –1974г.
10. Силовые установки вертолётов// под ред. . –Оборонгиз, Москва. –1959г.
11. Заготовительно – обрабатывающие технологии в производстве аэрокосмических летательных аппаратов// Учебное пособие , , и др. –Харьков, ХАИ. –1999г.
12. Конструкция авиационных газотурбинных двигателей// под ред. . –Москва, Воениздат. –1961г.









