4.3 Нормированная кривая разгона по основному каналу

табл. 4.3

1

0,0000

0,0000

30

14,5000

0,7579

2

0,5000

0,0050

31

15,0000

0,7779

3

1,0000

0,0100

32

15,5000

0,7977

4

1,5000

0,0166

33

16,0000

0,8143

5

2,0000

0,0315

34

16,5000

0,8259

6

2,5000

0,0498

35

17,0000

0,8408

7

3,0000

0,0713

36

17,5000

0,8541

8

3,5000

0,0896

37

18,0000

0,8673

9

4,0000

0,1177

38

18,5000

0,8756

10

4,5000

0,1493

39

19,0000

0,8872

11

5,0000

0,1824

40

19,5000

0,8988

12

5,5000

0,2189

41

20,0000

0,9088

13

6,0000

0,2554

42

20,5000

0,9154

14

6,5000

0,2919

43

21,0000

0,9221

15

7,0000

0,3201

44

21,5000

0,9287

16

7,5000

0,3566

45

22,0000

0,9353

17

8,0000

0,3947

46

22,5000

0,9420

18

8,5000

0,4312

47

23,0000

0,9486

19

9,0000

0,4594

48

23,5000

0,9552

20

9,5000

0,4942

49

24,0000

0,9602

21

10,0000

0,5290

50

24,5000

0,9652

22

10,5000

0,5622

51

25,5000

0,9701

23

11,0000

0,5857

52

25,5000

0,9751

24

11,5000

0,6153

53

26,0000

0,9801

25

12,0000

0,6434

54

26,5000

0,9851

26

12,5000

0,6716

55

27,0000

0,9900

27

13,0000

0,6899

56

27,5000

0,9950

28

13,5000

0,7131

57

28,0000

1,0000

29

14,0000

0,7347

5. Аппроксимация методом Симою.

С помощью программы ASR в пункту аппроксимации последовательно считаем площади каждой из кривой разгона для последующего получения уравнения передаточной функции.

Для кривой разгона по внешнему контуру для объекта второго порядка получаем следующие данные:

Значения площадей:

F1= 6.5614

F2= 11.4658

F3= -4.5969

F4= -1.1636

F5= 44.0285

F6= -120.0300

Ограничимся второй площадью. F1<F2, а F3 отрицательная. Следовательно для определения передаточной функции необходимо решить систему уравнений:

a1 = F1 + b1

a2 = F2 + b2 + b1 F2

a3 = F3 + b3 + b2 F1 + b1 F2

a1 = 6.5614 + b1

a2 = 11.4658 + b1 6.5614

0 = - 4.5969 + b1 11.4658

Решив систему получаем : b1 = 0.4

a1 = 6.9614

a2 = 14.0904

Тогда передаточная функция объекта второго порядка по внешнему контуру имеет вид:

0.4 s

W(s)=-------

2

14.0904 s + 6.9614 s + 1

Для кривой разгона по внутреннему контуру для объекта второго порядка получаем следующие данные:

Значения площадей:

F1= 9.5539

F2= 24.2986

F3= -16.7348

F4= -14.7318

F5= 329.7583

F6= -1179.3989

Для определения передаточной функции решаем систему, так как F3<0.

a1 = 9.5539 + b1

a2 = 24.2986 + 9.5539 b2

0 = -16.7348 + b1 24.2986

Решив систему получаем : b1 = 0.6887

a1 = 10.2426

a2 = 30.8783

Тогда передаточная функция объекта второго порядка по внутреннему контуру имеет вид:

0.6887 s + 1

W(s) = -------

2

30.8783s + 10.2426 s + 1

Для кривой разгона по заданию для объкта третьего порядка с запаздыванием получаем следующие данные:

Значения площадей:

F1= 10.6679

F2= 38.1160

F3= 30.4228

F4= -46.5445

F5= 168.8606

F6= -33.3020

Так как F3<F2 и положительна, то ограничиваемся второй площадью и передаточная объекта третьего порядка по управлению имеет вид:

1

W(s) =

2

38.1160 s + 10.6679 s + 1

6. Проверка аппроксимации методом Рунге - Кутта.

В программе ASR в пункте передаточная функция задаем полученные передаточные функции. И затем строим графики экспериментальной и аналитической кривых разгона (по полученной передаточной функции).

6.1 Для кривой разгона по внешнему контуру

Устанавливаем для проверки методом Рунге-Кутта конечное время 27c, шаг 0,5с.

6.2 Для кривой разгона по внутреннему контуру

Устанавливаем конечное время 39с, шаг 0,5с.

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6