Скорость копирования будет зависеть также от общего размера системы, которая должна быть построена. Ассемблеры не будут копироваться сами по себе; им будут нужны материалы и энергия, а также инструкции о том, как их использовать. Поставлять материалы и энергию могут обычные химические вещества, но должны быть в наличии и наномашины, чтобы их обрабатывать. Бугристые полимерные молекулы могут кодировать информацию подобно перфоленте, но должно также иметься и устройство чтения, чтобы переводить комбинацию бугорков в характер движения манипулятора. Вместе эти частидетали образуют самое главное в репликаторе: лента поставляет инструкции для сборки копии ассемблера, устройства чтения и других наномашин, а также и самой ленты.
Разумная конструкция этого вида репликаторов, вероятно, будет включать несколько ассемблерных манипуляторов и еще ещё несколько манипуляторов для удержания и перемещения объектов работы. Каждый из этих манипуляторов - это по одному миллиону атомов или около того. Другие части - устройства чтения ленты, химические процессоры и т. д. - могут быть такие же сложные как и ассемблеры. В конце концов, гибкая система копирования, вероятно, будет включать простой компьютер; следуя механическому подходу, упомянутому в Главе 1, это добавит порядка 100 миллионов атомов. Все части вместе взятые будут составлять менее чем 150 миллионов атомов. Предположим даже, что это будет один миллиард, чтобы оставить широкий допуск для ошибки. Не будем принимать во внимание дополнительные способности дополнительных манипуляторов ассемблера, оставляя еще ещё больший допуск. Работая со скоростью миллион атомов в секунду, система все равно скопирует себя за тысячу секунд или немногим более чем за пятнадцать минут - это примерно то время, за которое бактерия воспроизводит себя при хороших условиях.
Представьте себе такойподобный репликатор, плавающий в бутылке с химическими веществами, и производящий копии себя. Он строит одну копию за одну тысячу секунд, тридцать шесть за десять часов. Через неделю, он сделает достаточно копий, чтобы заполнить объем человеческой клетки. За столетие, он сделает достаточно, чтобы покрыть небольшое пятнышко. Если бы это было все, что могли делать репликаторы, мы бы возможно спокойно могли бы на них просто не обращать внимания.
Однако каждая копия будет строить еще ещё большее количество копий. Значит первый репликатор соберет копию за одну тысячу секунд, дальше два репликатора построят еще ещё два за следующую тысячу секунд, четыре построят еще ещё четыре, а восемь построят еще ещё восемь. В конце десяти часов будет иметься не просто тридцать два новых репликатора, а более 68 миллиардов. Менее чем за день одни бы весили тонну; менее чем за два дня одни бы стали весить больше, чем Земля; еще ещё через четыре дня одни бы превысили по массе Солнце и все планеты вместе взятые - если конечно бутылка с химическими веществами не опустеет до этого момента.
Постоянное удвоение означает экспоненциальный рост. Репликаторы умножаются по экспоненте, если нет ограничений, таких как недостаток места или ресурсов. Бактерии это делают, и примерно с той же самой скоростью как репликаторы, описанные только что. Люди воспроизводятся намного более медленно, однако если им дать достаточно времени, они также могли бы превзойти любой конечный источник ресурсов. Беспокойство о росте населения никогда не потеряет своей важности. Забота о том, как контролировать новые быстрые репликаторы, скоро станет действительно важной.
Молекулы и небоскребы
Машины, способные схватить и куда-то поместить отдельные атомы будут способны строить почти все что угодно, связывая нужные атомы вместе нужным образом, как я это описал в конце Главы 1. Безусловно, строительство больших объектов по одному атому будет медленным.
Репликаторы будут производить ассемблеры тоннами, но чЧтобы быстро создавать большие объекты, должно сотрудничать большое число ассемблеров сотрудничать, но репликаторы будут производить ассемблеры тоннами. Действительно, при правильной конструкции различие между ассемблерной системой и репликатором будет заключаться целиком в программе ассемблера.
Если самовоспроизводящийся ассемблер может сделать свою копию за тысячу секунд, то его можно запрограммировать, чтобы он построил что-нибудь еще ещё своего размера с той же скоростью. Точно так же тонна репликаторов может быстро построить тонну чего-нибудь еще ещё - и продукт будет иметь все свои миллиарды миллиардов миллиардов атомов в правильных местах (, только или с очень небольшой долей расположенных ошибочно).
ЧтобыДля того чтобы понять способности и ограничения этого метода сборки больших объектов, представьте себе плоский лист, покрытый маленькими сборочными манипуляторами - может быть армией репликаторов, запрограммированных для строительных работ и выстроившихся правильными рядами. Конвейеры и каналы связи за ними снабжают их молекулами для реакций, энергией и инструкциями по сборке. Если каждый манипулятор занимает площадь в 100 атомных диаметров, то позади каждого ассемблера будет место для конвейеров и каналов в сумме приблизительно в 10,000 атомов площади по диагонали поперечного сечения.
Похоже, этого места достаточно. Место в десять или двадцать атомов шириной может вмещать конвейер (возможно основанный на молекулярных поясах и шкивах). Канал в несколько атомов шириной может содержать молекулярный стержень, который, подобно стержням в механическом компьютере, упомянутым в главе 1, будет толкать и тянуть, чтобы передавать сигналы. Все манипуляторы будут работать вместе для построения широкогоширокой, твердую твердой структуру структуры слой за слоем. Каждый манипулятор будет ответственен за собственную область, работающую работая приблизительно с 10,000 атомами на слой. Лист ассемблеров, обрабатывающий 1,000,000 атомов в секунду на один манипулятор, закончит приблизительно одну сотню атомных слоев в секунду. Это может казаться слишком быстрым, но с этой скоростью, наращение толщины с бумажныйого листа будет занимать около часа, а создание плиты толщиной в метр займет в год.
Более быстрые манипуляторы могли бы ускорить сборку до более чем метра в день, но они также и выделят больше ненужного тепла. Если они могли бы строить слой толщиной в метр за день, высокая температура от одного квадратного метра могла бы поджаривать одновременно сотни бифштексов и могла бы поджарить также и молекулярные машины.
Представьте себе попытку построить дом путем склеивания отдельных зерен песка. Добавление слоя зерен могло бы занять у машин, склеивающих зерна, так много времени, что выращивание стен дома будет занимать десятилетия. Теперь представьте себе, что машины на фабрике вначале склеивают зерна в кирпичи. Фабрика может работать сразу ссо многими кирпичами. С достаточным количеством машин, склеивающих зерна, кирпичи могли бы вырастать быстро. Складывая уже собранные кирпичи,; сборщики стен могли бы далее быстро строить стены, складывая уже собранные кирпичи. Аналогично молекулярные ассемблеры будут работать вместе с большими ассемблерами, которые будут быстро строить большие объекты: машины могут быть любого размера - от молекулярного до гигантского. При таком подходе большая часть тепла, выделяемого при сборке, будет рассеиваться далеко от места сборки, при производстве частей.
Строительство небоскреба и архитектура живого предлагают аналогичный способ строить большие объекты. Большие растения и животные имеют сосудистые системы, сложные системы каналов, которые несут материалы к молекулярным машинам, работающим везде в их тканях. Подобным образом после того как сборщики закончат каркас небоскреба, "сосудистая система" здания - эскалаторы и коридоры, с помощью кранов - будут переносить строительные материалы к рабочим по всему внутреннему объему здания. Сборочные системы также могли бы использовать эту стратегию, вначале возводя леса и далее работая внутри по всему объему, соединяя материалы, принесенные по каналам извне.
Представьте себе этот подход, работающий внутри чана на промышленном предприятии и используемый для "выращивания" большого двигателя ракеты, работающий внутри чана на промышленном предприятии. Чан - сделанный из блестящей стали, со стеклянным окном для удобства посетителей возвышается выше человеческого роста, так какпоскольку он должен содержать законченный двигатель. Трубы и насосы связывают его с другим оборудованием и к с теплообменниками с водяным охлаждением. Это Такое устройство позволяет оператору пропускать через чан различные жидкости.
ЧтобыДля того чтобы начать процесс, оператор откидывает крышку чана, и опускает в него опорную плиту, на которой будет строиться двигатель. Далее крышка опять плотно закрывается. По нажатию кнопки насосы затопляют емкость густой молочной жидкостью, которая затопляет плиту и делает неясным видное в окошко. Эта жидкость течет из другого чана, в котором воспроизводящиеся ассемблеры вырастили и перепрограммировали, заставив их скопировать и распространить новую ленту инструкций (немного похоже на заражение бактерии вирусом). Эти Такие новые ассемблерные системы, меньшие, чем бактерия, рассеивают свет и из-за этого жидкость выглядит молочной. То, что они в жидкости преобладают, делает ее её густой.
В центре опорной плиты, глубоко в кружащейся, загруженной ассемблерами жидкости, находится "семя". Оно содержит нанокомпьютер с хранящимися планами машины, а на его поверхности находятся места, к которым прикрепляются ассемблеры. Когда ассемблер прилипает к нему, они соединяются друг с другом и семя-компьютер передает инструкции компьютеру ассемблера. Это Такое новое программирование сообщает ему, где он находится по отношению к семени, и дает ему команду протянуть свои манипуляторы и зацепить другие ассемблеры. Далее они подключаются тоже и программируются подобным образом. Подчиняясь инструкциям, получаемым от семени (которые распространяются через расширяющуюся сеть ассемблеров) из хаоса жидкости растет что-то вроде кристалла, состоящего из ассемблеров. Так какПоскольку каждый ассемблер знает свое место в плане, он зацепляет другие ассемблеры только когда необходимо. Это Так образуется структуру структура менее правильную правильная и более сложнуюсложная, чем естественный кристалл. За несколько часов каркас из ассемблеров вырастает так, что уже соответствует планируемой конечной форме ракетного двигателя.
ТогдаЗатем насосы чана возвращаются к жизни, заменяя молочную жидкость одиночных ассемблеров чистой смесью органических растворителей и растворенных веществ, включая алюминиевые сплавы, компоненты, обогащенные кислородом, и компоненты, служащие в качестве топлива для ассемблеров. По мере того, как жидкость становится более прозрачной, форма двигателя ракеты становится видимой через окно, напоминая модель в полном масштабе, вылепленную в прозрачной белой пластмассе. Затем, сообщение, распространяющееся от семени, предписывает нужным ассемблерам освободить своих соседей и свернуть свои манипуляторы. Они вымываются из структуры быстрой белой лентой, оставляя прочную структуру связанных ассемблеров, оставляя теперь достаточно пространства для работы. Очертания двигателя в чане вырастают почти прозрачными, с небольшой радужностью.
Каждый остающийся ассемблер, хотя все еще ещё связанный с соседями, теперь окружен крошечными заполненными жидкостью каналами. Специальные манипуляторы на ассемблерах работают подобно жгутам, подхлестывая жидкость и способствуя ее её распространению через каналы. Эти Такие движения, подобно всем остальным, выполняемым ассемблерами, питаются энергией молекулярных машин, для которых служат топливоом служат молекулы в жидкости. Также как растворенный сахар дает энергию дрожжам, также эти растворенные химические вещества дают энергию ассемблерам. Эта текущая жидкость подносит свежее топливо и растворяет сырые строительные материалы; вытекая обратно, она уносит выработанное тепло. Сеть коммуникаций распространяет инструкции для каждого ассемблера.
Ассемблеры теперь готовы начать строить. Они должны построить двигатель ракеты, состоящий главным образом из труб и насосов. Это означает построить прочные, легкие структуры сложных форм, некоторые из которых способны выдерживать очень высокую температуру, некоторые содержат внутри трубки, по которым течет охлаждающая жидкость. Там, где нужно очень большое усилие, ассемблеры начинают делать прутки из переплетающихся волокон углерода, в их алмазной форме. Из этого они строят структуру, приспособленную, чтобы выдерживать ожидаемый тип нагрузки. Там, где важно сопротивление температуре и коррозии (как на многих поверхностях), они строят аналогичные структуры из оксида алюминия в его сапфировой форме. В местах, где нагрузки будут низки, ассемблеры сберегают массу, оставляя более широкие пустые пространства в структуре. В местах, где нагрузка будет высокой, ассемблеры укрепляют структуру до тех пор, пока остающиеся пространства едва достаточны, чтобы сами ассемблеры могли двигаться. В других местах ассемблеры кладут другие материалы для того, чтобы образовать сенсоры, компьютеры, моторы, соленоиды и все остальное, что необходимо.
ЧтобыДля того чтобы закончить свою работу, они строят стенки, разделяющие остающиеся пространства в каналах в почти запечатанные ячейки, затем отходят к последним открытым местам и выкачивают оставшуюся внутри жидкость. При запечатывании пустых ячеек, они полностью уходят из строящегося объекта и уплывают в циркулирующей жидкости. Наконец, чан опустевает, пульверизатор омывает двигатель, крышка открывается и внутри возвышается готовый двигатель, который сохнет. Его создание потребовало менее дня и почти никакого человеческого внимания.
На что похож этот двигатель? Это не массивный кусок сваренного и скрепленного болтами металла, он без швов, подобный драгоценному камню. Его пустые внутренние ячейки, построенные в ряды, находящиеся примерно на расстоянии длины волны света друг от друга, имеют побочный эффект: подобно углублениям на лазерном диске они преломляют свет, делая показывая различную радужность подобно той, что делает огненныйому опалу. Эти Такие пустые пространства облегчают структуру, уже сделанную из самых легких и прочных известных материалов. В сравнении с современными металлическими двигателями, этот усовершенствованный двигатель будет иметь возможно более чем на 90 процентов меньшую массу.
Ударьте слегка по нему, и он отзовется как колокольчик удивительно высокого для своего размера тона. Установленный в космическом корабле, сделанном тем же способом, он легко поднимет его со взлетно-посадочной полосы в космос и вернет снова назад. Он выдерживает длительное и интенсивное использование, потому что прочные материалы позволили разработчикам включать большие запасы прочности. Поскольку Благодаря тому что ассемблеры позволили проектировщикам делать его материал таким, что он при приложении усилия течет до того, как ломается (оплавляя трещины и останавливая их распространение), двигатель не только прочен, но и износостоек.
При всем своем превосходстве, этот двигатель по сути вполне обычен. В нем просто заменили плотный металл тщательно устроенными структурами из легких, прочно связанных атомов. В конечном продукте никаких наномашин нет.
Более продвинутые проекты будут использовать нанотехнологию более фундаментальнглубоко. Они могли бы оставлять в создаваемом объекте сосудистую систему для обеспечения ассемблерной и дизассемблерной систем; их можно запрограммировать на восстановление изношенных частей. Пока пользователи снабжают такойподобный двигатель энергией и сырьем, он будет обновлять свою собственную структуру. Еще ещё более продвинутые двигатели также могут быть буквально гибкими. Ракетные двигатели работают наилучшим образом, если они могут принимать различную форму при различных режимах функционирования, но сейчас инженеры не могут сделать обычный металл прочным, легким и при этом гибким. С нанотехнологией, однако, структура более прочная, чем сталь, и более легкая, чем дерево, могла бы изменять свою форму, подобно мускулу (работая как мускул по принципу скользящих волокон). Двигатель мог бы тогда расширяться, сжиматься и изгибаться таким образом, чтобы обеспечивать требуемую силу тяги в требуемом направлении при различных условиях. С запрограммированными нужным образом ассемблерами и дизассемблерами, он мог бы даже глубоко изменять свою структуру через длительное время после того, как покинул чан, в котором рос.
Короче говоря, воспроизводящиеся ассемблеры будут копировать себя тоннами, потом делать другие продукты, такие как компьютеры, двигатели ракет, стулья и т. д. Они будут делать дизассемблеры, способные разрушить скалу, чтобы получить из нее сырье. Они будут делать коллекторы солнечной энергии, чтобы обеспечивать себя энергией. Хотя сами они маленькие, строить они будут большое. Группы наномашин в природе строят китов, и рассеивают зерна самовоспроизводящихся машин, и организуют атомы в огромные структуры целлюлозы, выстраивая такого гиганта, как калифорнийское мамонтовое дерево. Нет ничего удивительного в выращивании ракетного двигателя в специально подготовленном чане. Действительно, лесники, если им дать подходящие "семена" ассемблеров, могли бы выращивать космические корабли из земли, воздуха и солнечного света.
Ассемблеры будет будут способен способны делать практически все что угодно из обычных материалов без использования человеческого труда, заменяя дымящие фабрики системами, чистыми как лес. Они в корне преобразуют технологию и экономику, открывая нам новый мир возможностей.
Глава 5. ДУМАЮЩИЕ МАШИНЫ
Мир стоит на пороге второго компьютерного века. Новая технология, выходящая сейчас из лаборатории, начинает превращать компьютер из фантастически быстрой вычислительной машины в устройство, которое подражает человеческому процессу мышления, давая машинам способность рассуждать, производить суждения, и даже учиться. Уже этот "искусственный интеллект" выполняет задачи, которые, как когда-то думали, что под силу только человеческому интеллекту...
"БИЗНЕС УИК"
КОМПЬЮТЕРЫ появились из глубин лабораторий, чтобы помочь писать, считать и играть дома и в офисе. Эти Такие машины выполняют простые, повторяющиеся задачи, но машины, которые пока еще ещё в лабораториях, делают намного больше. Исследователи искусственного интеллекта говорят, что компьютеры могут быть умными и все меньшее и меньшее количество людей с этим не соглашается все меньшее и меньшее количество людей. ЧтобыДля того чтобы понять наше будущее, мы должны понять, также ли невозможен искусственный интеллект, как полет на Луну.
Думающие машины не обязаны походить на людей по форме, назначению, или умственным умениям. Действительно, некоторые системы искусственного интеллекта не покажут немного черт умного дипломированного специалиста-гуманитария, но зато будут служить только как мощные машины для проектирования. Тем не менее, понимание того, как человеческий разум эволюционировал из бессознательной материи, прольет свет на то, как можно заставить машины думать. Разум, подобно другим формам порядка, эволюционировал путем вариации и отбора.
Разум действует. Не нужно изучить скиннеровский бихевиоризм, чтобы понять важность поведения, включая внутреннее поведение, называемое мышлением. РНК, копирующееся в испытательных пробирках, показывает, как идея цели может применяться (как своего рода стенография) к молекулам, совершенно не имеющим разума. У них нет нервов и мускулов, но они развились, чтобы "вести себя" так, как это способствует их воспроизводству. Вариация и селекция сформировали простое поведение каждой молекулы, которое остается постоянным на протяжении всей ее её "жизни".
Отдельные молекулы РНК не приспосабливаются, но бактерии это делают. Конкуренция выделили выделила бактерии, которые приспосабливаются к изменениям, например, подстраивая свой набор пищеварительных ферментов под имеющуюся в наличии пищу. Однако сами эти механизмы адаптации постоянны: молекулы пищи переключают генетические переключатели так же, как холодный воздух переключает термостат.
Некоторые бактерии также используют примитивную форму управления поведением по методу проб и ошибок. Бактерии этого вида имеют тенденцию плавать по прямым линиям, и имеют ровно столько "памяти", чтобы знать, улучшаются ли окружающие условия или ухудшаются по направлению их движения. Если они ощущают, что условия улучшаются, они продолжают двигаться вперед. Если они чувствуют, что условия становятся хуже, они останавливаются, переворачиваются и направляются в случайном, обычно ином, направлении. Они исследуют направления, и отдают предпочтение хорошим, отвергая плохие. И поскольку это заставляет их мигрировать в направлении больших концентраций молекул пищи, они выжили.
У плоских червей нет мозга, однако они показывают способность к настоящему обучению. Они могут учиться выбрать правильную дорожку в простом T-образном лабиринте. Они пробуют повернуть налево и направо, и постепенно выбирают поведение или формируют привычку, которая дает лучший результат. Однако эЭтот выбор поведения по его последствиям, что психологи-бихевиористы называют "законом последствий". Эволюционирующие гены вида червя произвели отдельных червей с эволюционирующим поведением.
Однако черви, обученные ползать по лабиринту (даже голуби Скиннера, обученные клевать, когда загорается зеленый свет) не выявляют никакого признака рефлексивной мысли, которую мы ассоциируем с понятием разум. Организмы, приспосабливающиеся только через простой закон последствий, учатся только методом проб и ошибок, варьируя и выбирая действительное поведение - они не думают вперед и не принимают решений. Однако естественный отбор часто поощрял организмы, которые могли думать. М, а мышление не содержит волшебства. Как отмечает Даниель Деннетт из Туфтского университета, гены в результате эволюции могут обеспечивать мозг животных внутренними моделями того, как устроен мир (нечто подобное моделям в автоматизированных системах проектирования). Эти Такие животные могут "воображать" различные действия и последствия, избегая действий, которые "выглядят" опасными и выполняя действия, которые "выглядят" безопасными и выгодными. Испытывая идеи относительно этих внутренних моделей, они могут избегать усилий и риска проверки различных действий во внешнем мире.
Деннетт далее указывает, что закон последствий может изменять сами модели. Также как гены могут обеспечивать эволюционирующее поведение, также они могут и предусматривать эволюционирующие умственные модели. Гибкие организмы могут изменить свои модели и уделять больше внимания версиям, которые показали, что они служат лучшим руководством к действию. Все мы знаем, что значит пробовать разные вещи, и выяснять, какие из них работают. Модели не обязательно должны быть инстинктивными; они могут развиваться в течение одной жизни.
Бессловесные животные, однако, редко передают свое новое понимание. Оно исчезает с мозгом, который вначале их произвел, потому что накопленные умственные модели не отпечатываются в гены. Однако даже безмолвные животные могут подражать друг другу, порождая мимы и культуры. Самка обезьяны в Японии изобрела способ использовать воду для отделения зерен от песка; другие быстро научились делать то же самое. В человеческих культурах, с их языком и картинками, ценные новые модели того, как работает мир, могут переживать своих создателей и распространяться по всему миру.
Еще на более высоком уровне, разум (а "разум" теперь уже подходящее слово) может содержать эволюционирующие стандарты для оценки, являются ли части модели - (идеи, входящие в мировоззрение), достаточно надежными, чтобы направлять действие. Разум, таким образом, выбирает собственное содержание, включая правила отбора. Правила суждений, которые отфильтровывают содержание науки, развились именно таким образом.
Как эволюционируют поведение, модели, и стандарты для знания, также могут эволюционировать и цели. То, что приносит хорошее, как оно оценивается по каким-то более базовым стандартам, в конечном счете начинает казаться хорошим -; тогда оно становится целью само по себе. Честность окупается, и поэтому становится ценным принципом поведения. По мере того как мысли и умственные модели направляют действие и дальнейшие мысли, мы приобретаем четкость мышления и точность умственных моделей как цели сами по себе четкость мышления и точность умственных моделей. Растет любопытство и с ним любовь к знаниям – тоже сама по себе. Эволюция целей, таким образом, продвигает и науку, и этику. Как писал Чарльз Дарвин: "наивысшая возможная стадия в моральной культуре - это когда мы поймем, что мы должны контролировать свои мысли". Мы также достигаем этого путем вариации и селекции, сосредотачиваясь на ценных мыслях и позволяя остальным уходить из поля внимания.
Марвин Мински (, лаборатория искусственного интеллекта Массачусетского технологического института), рассматривает разум как своего рода общество, развивающуюся развивающуюся систему сообщающихся, сотрудничающих и конкурирующих агентов, каждый из которых состоит из еще ещё более простых агентов. Он описывает размышление и действие в терминах деятельности этих агентов. Некоторые из них могут делать не многим более, чем управлять рукой, чтобы схватить чашку; другие (намного более сложные) управляют речевой системой тогда, когда она подбирает слова в очень неприятной ситуации. Мы не осознаем управление нашими пальцами, когда они охватывают чашку именно так, а не иначе. Мы поручаем такиеподобные задания компетентным агентам и редко замечаем их, если они не ошибаются. Мы все чувствуем конфликтующие побуждения и делаем обмолвки; это - симптомы разногласия между различными агентами разума. Наше осознание этого - часть саморегулирующий процесс, посредством которого наши самые главные агенты управляют всеми остальными.
Мимы могут рассматриваться как агенты разума, которые сформированы обучением и подражанием. ЧтобыДля того чтобы почувствовать, что две идеи противоречат, вы должны внедрить обе в качестве агентов в ваш разум - хотя одна может быть старой, сильной и поддерживаться союзниками, а другая - новая идея-агент, которая может не выжить уже после первой своей битвы. Благодаря нашей сверхъестественной способности себя осознавать мы часто пытаемся понять, откуда появилась та или иная идея в нашей голове. Некоторые люди воображают, что эти мысли и ощущения приходят прямо из агентов, находящихся вне их умов; они склоняются к вере, что мысли могут плавать вне человеческого разума и временами в него входить.
В Древнем Риме люди верили в "гениев", в добрых и злых духов, посещающих человека от рождения до смерти, принося удачу и невезение. Они приписывали выдающийся успех специальному "гению". И даже теперь, люди, которые не в состоянии понять, как естественный процесс порождает новизну, считают "гений" формой волшебства. Но на самом деле эволюционирующие гены сделали разум, который расширяет свое знание, варьируя структуры идей и производя их селекцию. Со своей быстрой вариацией и эффективной селекцией, ведомый знанием, полученным от других, - почему же такойподобный ум не должен проявить то, что мы называем гением? Рассмотрение интеллекта как естественного процесса делает машины менее волшебудивительными. Это также дает представление, как они могли бы работать.
Машинный интеллект
Одно из словарных определений "машины" -– это любая система или устройство, такое как электронно-вычислительная машина, которая исполняет или помогает в выполнении человеческой задачи. "Но только вот вопрос - как много человеческих задач будут способны выполнять машины? вычисление Вычисление было однажды интеллектуальной задачей, на которую машины были не способны - оно было только в компетенции умных и образованных людей. Сегодня никто не думает называть карманный калькулятор искусственным интеллектом; вычисление сейчас выглядит "просто" механической процедурой.
Однако Также и идея о создании обычных компьютеров когда-то была шокирующей. К середине 19 века, тем не менее, Чарльз Бэббидж построил механические калькуляторы и часть программируемого механического компьютера; однако, он столкнулся с финансовыми трудностями и сложностями, связанными со строительством машины. Некий доктор Юнг тоже совсем не помог: он утверждал, что было бы дешевле инвестировать деньги и использовать на проценты , чтобы оплатить людей-калькуляторов. Также не помог и британский королевский астроном, сэр Джорж Эари - запись в его дневнике гласит, что "15 сентября мистер Гулберн... спросил мое мнение по поводу полезности вычислительной машины Бэббиджа... Я ответил, хорошо вникнув в суть вопроса, что мое мнение - она бесполезна".
Машина Бэббиджа была впереди своего времени - это значит, что строя ее, ее её создатели были должны продвинуть искусство создания точных частей. И вВ действительности она не очень превзошла бы скорость тренированного человека-вычислителя - но она была бы более надежна и легче поддавалась бы улучшениям.
История компьютеров и искусственного интеллекта (известного как ИИ) походит на историю полета в воздухе и полетов в космос. До недавнего времени люди отклоняли обе идеи как невозможные - обычно это значит, что они не могли понять, как их воплотить, или были бы расстроены, если могли ли бы. И пока что ИИ не имеет простой окончательной демонстрации, ничего подобного работающему аэроплану или приземлению на Луну. Он прошел длинный путь, но люди продолжают изменять свои определения интеллекта.
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |



