б) в теплый период года (для всех теплиц) - среднюю температуру и среднюю относительную влажность самого жаркого месяца, среднюю скорость ветра за июль.
Отопление и вентиляцию теплиц и парников следует проектировать с учетом поступлений тепла, аккумулированного почвой в дневное время (холодный период года) и от солнечной радиации (теплый период года).
При расчете водяного отопления необходимо учитывать лучистую составляющую теплоотдачи нагревательными приборами (трубами) и изменение теплоотдачи по их длине.
В зимних теплицах следует предусматривать водяное отопление или водяное в сочетании с воздушным (комбинированное отопление) и водяной обогрев почвы. Комбинированную систему отопления необходимо предусматривать, как правило, в зонах с наружной температурой наиболее холодных суток минус 20 °С и ниже, в остальных районах ее применение должно быть обосновано. Тепловую мощность воздушного обогрева в системе комбинированного отопления следует принимать в однопролетных теплицах равной 35-50%, в многопролетных - 20-40 % общего расхода тепла в расчетный период.
Проемы для естественной вентиляции (притока и удаления воздуха) в многопролетных теплицах шириной свыше 25 м следует располагать в покрытии - вдоль коньков, во всех однопролетных и многопролетных шириной менее 25 м - в наружных стенах (для притока) и в покрытии (для удаления). Открывание и закрывание вентиляционных проемов должно быть механизировано. В теплицах с воздушным отоплением необходимо предусматривать использование вентиляторов отопления для вентиляции в теплый период года. Вентиляция парников осуществляется подниманием (открыванием) парниковых рам или покрытия из пленки. В однопролетных теплицах площади приточных и вытяжных проемов для естественной вентиляции следует определять расчетом. В многопролетных теплицах, предназначенных для выращивания овощей, общую площадь проемов для естественной вентиляции необходимо принимать: в районах севернее 60° с. ш. - не менее 10%, в остальных районах - не менее 20 % общей поверхности ограждения теплиц. В многопролетных теплицах, предназначенных для выращивания рассады (высаживаемой в открытый грунт), общую площадь проемов для естественной вентиляции следует принимать в соответствии с требованиями технологии.
4.4 Электротехнические устройства
Электротехнические устройства следует проектировать в соответствии с правилами устройства электроустановок (ПУЭ) Минэнерго СССР. Категории электроприемников по обеспечению надежности электроснабжения теплиц и парников необходимо принимать в соответствии с требованиями ОНТП-СХ.10-81. В проездах теплиц и коридорах следует предусматривать искусственное освещение преимущественно люминесцентными лампами; освещенность на уровне пола должна быть не более 10 лк. Облучение растений должно осуществляться высокоэффективными облучательными устройствами в соответствии с требованиями ОНТП-СХ.10-81. Расстояние между облучательными устройствами и высота их подвески должны определяться расчетом. Прокладку распределительных сетей в теплицах из кабелей и проводов в пластмассовых трубах следует выполнять открыто на лотках.
5. Описание разработанного решения системы управления, обеспечивающего выполнение требований технического задания
5.1 Оснащение тепличного хозяйства
Для обеспечения выполнения требований технического задания, предлагается обеспечить надежное централизованное управление при помощи датчиков которые связаны напрямую с промышленным контроллером и элементы регулирования.
Измерение температуры воздуха будет осуществляться с помощью датчиков KTY-81-210. Датчики помещаются в специальный освинцованный пластиковый корпус. Данные датчики имеют небольшой уровень погрешности и подходят для данного проекта. Измерение температуры воды в резервуаре будет осуществляться с помощью датчиков numerix ETF-01. Погружные датчики температуры устанавливаются непосредственно в трубопровод для измерения температуры воды (или другого теплоносителя) в системах отопления, вентиляции и кондиционирования воздуха.
Сигналы с датчиков уровня воды, температур воздуха и воды, влажности почвы и воздуха, расхода воды, а также уровня воды резервуаре поступают на промышленный микроконтроллер Modicon 984 – 685 модуль. Питание датчиков обеспечивается дополнительным блоком питания.
Измерение влажности воздуха будет осуществляться с помощью датчиков Honeywell HIH-3602. Датчики осуществляют непрерывные круглосуточные измерения относительной влажности воздуха и поддержание заданных режимов.
Измерение влажности почвы будет осуществляться с помощью датчиков Gardena. Требуемая влажность задается с помощью вращающегося регулятора. Индикация актуального значения влажности почвы. Укомплектован соединительным кабелем 5 м со штекером.
Для регулирования влажности воздуха и почвы используются спринклеры. Для поддержания нормального температурного режима используется центральное водное отопление.
5.2 Оборудование тепличного хозяйства
В электрощитовом зале насосной станции второго подъема будет установлен шкаф с оборудованием, отвечающим за управление частотными регуляторами, измерение расхода и давления воды на выходе насосной станции, измерение уровня воды в резервуаре, а также за включение/отключение и измерение токов пожарных насосов.
Для управления влажностью и температурой применяются спринклеры (4191 компании JHi I. S) для опрыскивания почвы и воздуха, а также водяная система отопления (подача нагретой воды с котельной).
В качестве датчика влажности воздуха используется датчик HIH-3602-L фирмы Honeywell.
Датчик ДРК-4 предназначен для измерения расхода и объема воды в трубопроводах.
Выходные сигналы с датчиков уровня, давления и тока поступают на промышленный контроллер Modicon 984 – 685.
Оборудование смонтировано в шкафу Schroff размером – 320 /1/.
5.3 Центральный пост оператора
Центральный пост оператора - комплекс технических средств, находящийся в операторской комнате. Он включает в себя шкаф с оборудованием, монитор и консоль управления.
В качестве управляющего в системе используется промышленный компьютер, имеющий в своем составе корпус РАС-40Н с пассивной объединительной платой, процессорную плату РСА-6154 с флэш-диском DiskOnChip, 32 Мбайт ОЗУ и процессором Pentium 150 МГц.
В шкафу монтируются промышленный компьютер с коммуникационными платами, устройство бесперебойного питания.
Электрощитовая связана с центральным постом оператора каналом RS-485.
6. Описание видов обеспечения
Исходя из технического задания можно выделить следующие основные виды обеспечения разрабатываемой АСУ:
- математическое;
- информационное;
- обеспечение сохранности информации;
- программное;
- техническое;
Далее будут рассмотрены математическое и информационное, т. к. в проекте они практически явно не выражены.
6.1 Математическое обеспечение
Математическое обеспечение микропроцессорного контроллера должно обеспечивать выполнение следующих функций первичной обработки аналоговых сигналов:
- расчет действительных значений;
- фильтрация сигналов (усреднение);
- сравнение с уставками (технологические границы);
- формирование дискретных сигналов нарушений;
- формирование массива текущих значений параметров.
Первые два пункта обеспечиваются модулями аналоговых входов управляющих контроллеров. Последние – самими контроллерами, в соответствии с записанной рабочей программой.
Математическое обеспечение микропроцессорных контроллеров, кроме функций по обработке текущей информации, выполняет также управляющие и противоаварийные функции, в состав которых входят:
- автоматический программный пуск оборудования;
- автоматическое регулирование технологических параметров;
- дистанционное управление регулирующим оборудованием.
Настройка систем регулирования производится заданием соответствующих коэффициентов.
Математическое обеспечение, кроме указанных задач, обеспечивает выполнение основных функций АСУ ККТХ, функций хранения и представления информации. Для этого реализуются алгоритмы:
- функционирования АСУ ККТХ;
- автоматического пуска оборудования ТХ;
- автоматического управления спринклерами;
- автоматического управления подачей воды в резервуар;
- создания базы данных о технологическом процессе;
- сбора и первичной обработки аналоговой информации;
- усреднения и интегрирования параметров;
- технологического контроля;
- учета состояния оборудования;
- отображения информации оператору-технологу;
- опроса микропроцессорных контроллеров;
- выдачи заданий микропроцессорному контроллеру;
- диагностики микропроцессорных контроллеров.
6.2 Информационное обеспечение
База данных АСУ ККТХ формируется путем заполнения стандартных форм на экране видеотерминала на основании перечня каналов контроля и регулирования. Вызов форм осуществляется при помощи системы вложенных меню. Меню обеспечивает:
- описание системы;
- описание контроллера;
- описание системы отображения;
- описание аналоговых сигналов;
- описание протоколирования;
- описание подсистемы оповещения и сигнализации.
Описание аналоговых сигналов должно определять подключение сигнала в системе, параметры обработки сигнала, признаки усреднения, включения значений параметра в рапорт-отчет, формирования истории параметров контура на указываемом временном интервале, контроля на достоверность.
Описание протоколирования и печати должно содержать описание таблицы нарушений, описание рапорта-отчета, описание архивного тренда, описание протоколирования значений параметров, заносимых оператором в оперативную память контроллера.
Также предусматривается протоколирование действий оператора по изменению задания, режима работы контуров управления, выдаче дискретных управляющих воздействий (пуск, останов, открытие, закрытие) и запись протокола на носители ПЭВМ.
Используемые мнемосхемы могут строиться из следующих элементов:
- алфавитно-цифровые символы;
- стандартные технологические символы (клапаны, насосы, емкости и т. д.);
- графические символы;
- векторы, дуги, окружности;
- заштрихованные участки.
Для конфигурирования системы и формирования базы данных предусмотрены режимы корректировки базы данных. Корректировка базы данных выполняется в автономном режиме работы ПЭВМ или на инструментальной ПЭВМ.
7. Разработка базы параметров контроля и регулирования
Все основные и вспомогательные параметры, используемые при управлении АСУ ККТХ, сведены в таблице 7.1. В таблице указаны верхние и нижние границы их предельных значений, единицы измерения, контроллеры, используемые для первичного преобразования и фильтрации параметров и их количество.
Таблица 7.1 – Измеряемые физические величины АСУ ККТХ
Параметр регулирования | Ед. изм. | Мин. | Макс. | Контроллер | Количество |
Влажность воздуха | % | 0 | 100 | HIH-3602 | 1 |
Влажность почвы | % | 0 | 40 | GARDENA | 8 |
Температура воздуха | t° | 0 | 70 | KTY-81-210 | 1 |
Температура воды в резервуаре | t° | 0 | 60 | ETF01 | 1 |
Уровень воды в резервуаре | м | 0 | 3 | SML-PS1 | 1 |
Расход воды | м3 | 0 | 20 | ДРК-4-ОП | 1 |
8. Описание схемы функциональной электрической автоматизации
Автоматическую систему мониторинга и управления водозаборным узлом можно условно разбить на три составляющих:
- система управления ТХ;
- рабочее место оператора.
Первая подсистема изображена на функциональной схеме автоматизации в явном виде, последняя – в виде табличного обозначения ЭВМ. Оборудование включает в себя датчики, устанавливаемые по месту, исполнительные устройства, приборы, устанавливаемые на щите.
Все условные обозначения приборов и средств автоматизации исполнены в соответствии с ГОСТ 21.404-85.
9 Выбор и обоснование отдельных узлов и элементов
9.1 Датчик влажности воздуха
По требуемой точности измерения, которая определяется точностью поддержания влажности
и коэффициентом
:

и заданному диапазону изменения регулируемой переменной выбираем датчик HIH-3602-L фирмы Honeywell (рис. 9.1).

Рис. 9.1 - Внешний вид датчика влажности
Датчики этой серии предназначены для использования в многоканальных автоматизированных системах контроля параметров микроклимата на базе ПЭВМ, которые осуществляют непрерывные круглосуточные измерения относительной влажности воздуха и поддержание заданных режимов.
В настоящее время на практике для измерения относительной влажности применяется несколько технологий, использующих свойство различных структур изменять свои физические параметры (емкость, сопротивление, проводимость и температуру) в зависимости от степени насыщения водяным паром. Каждой из этих технологий свойственны определенные достоинства и недостатки (точность, долговременная стабильность, время преобразования и т. д.).
Среди всех типов емкостные датчики, благодаря полному диапазону измерения, высокой точности и температурной стабильности, получили наибольшее распространение, как для измерения влажности окружающего воздуха, так и применения в производственных процессах.
Компания Honeywell производит семейство емкостных датчиков влажности, применяя метод многослойной структуры (рис.5), образуемой двумя плоскими платиновыми обкладками и диэлектрическим термореактивным полимером, заполняющим пространство между ними. Термореактивный полимер, по сравнению с термореактивной пластмассой, обеспечивает датчику более широкий диапазон рабочих температур и высокую химическую стойкость к таким агрессивным жидкостям и их парам, как изопропил, бензин, толуол и аммиак. В дополнение к этому датчики на основе термореактивного полимера имеют самый большой срок службы в этиленоксидных стерилизационных процессах.
Характеристика | Величина |
Активный материал | термореактивный полимер |
Подложка | керамическая или кремниевая |
Изменяющийся параметр | ёмкость |
Измеряемый параметр | % RH |
Диапазон измерения | 0…100% RH |
Точность | ±1…±5% |
Гистерезис | 1,2% |
Линейность | ±1% |
Время отклика | 5…60 сек |
Диапазон рабочих температур | -40…+1850С |
Температурный эффект | -0,0022% RH/0С |
Долговременная стабильность | ±1% RH/5 лет |
Стойкость к загрязнению | отличная |
Стойкость к конденсату | отличная |
В процессе работы водяной пар проникает через верхнюю пористую обкладку конденсатора (рис.5) и уравновешивается с окружающим газом. Одновременно эта обкладка защищает электрические процессы, протекающие в полимерном слое, от внешних физических воздействий (света и электромагнитного излучения). Слой полимера, покрывающий пористый платиновый электрод сверху, служит защитой конденсатора от пыли, грязи и масел. Такая мощная фильтрационная система, с одной стороны, обеспечивает датчику длительную бесперебойную работу в условиях сильной загрязненности окружающей среды, с другой - снижает время отклика.
Выходной сигнал абсорбционного датчика влажности представляет собой функцию от температуры и влажности, поэтому для получения высокой точности измерения в широком диапазоне рабочих температур требуется температурная компенсация характеристики преобразования. Компенсация особенно необходима, когда датчик используется в индустриальном оборудовании для измерения влажности и точки росы (рис. 9.2).

Рис. 9.2 - Метод многослойной структуры, применяемый при изготовлении датчиков влажности
Датчики влажности Honeywell - это интегрированные приборы. Помимо чувствительного элемента, на той же подложке расположена схема обработки сигнала, которая обеспечивает преобразование сигнала, его усиление и линеаризацию. Выходной сигнал датчика Honeywell является функцией от напряжения питания, окружающей температуры и влажности. Чем выше напряжение питание, тем больше размах выходного сигнала и, соответственно, чувствительность. Связь же между измеренной датчиком влажностью, истинной влажностью и температурой показана на объемной диаграмме (рис. 9.3).

Рис. 9.3 - Связь между измеренной датчиком влажностью, истинной влажностью и температурой
Она легко аппроксимируется с помощью комбинации двух выражений:
1. Прямая наилучшего соответствия при 25 °C (жирная линия на диаграмме), описывается выражением Uвых = Uпит(0,0062 · (%RH25) + 0,16). Из этого уравнения определяется процент RH25 при температуре 25 °C.
2. Далее производится температурная коррекция и вычисляется истинное значение RH: RHистинная = (%RH25) · (1,0,00216T), где T измеряется в °C.
Выражения выше соответствуют характеристикам реальных датчиков со следующими отклонениями:
– для 
– для 
– для 
Модели HIH-3602-L и HIH-3602-L-CP выполнены в корпусе TO-39 со щелевым отверстием. Они предлагают оптимальное соотношение цена/надежность. Эти датчики нашли широкое применение в метеорологическом оборудовании и системах климат-контроля.
9.2 Датчик расхода воды на распыление
Датчик ДРК-4 предназначен для измерения расхода и объема воды в трубопроводах и имеет следующие технические характеристики:
1) Измеряемая среда – вода с параметрами:
– температура от 1 до 150°С;
– давление до 2,5 МПа;
– вязкость до 2·106 м2/с
2) Диаметр трубопровода Dу 80...4000 мм
3) Динамический диапазон 1:100
4) Пределы измерений 2,7...м3/ч
5) Выходные сигналы: токоимпульсный (ТИ); унифицированный токовый 0…5, 4…20 мА;
6) Предел допускаемой относительной погрешности измерений объема и расхода по импульсному сигналу и индикатору:
±1,5% при скоростях потока 0,5...5 м/с;
±2,0% при скоростях 0,1≤V<0,5; 5<V≤10 м/с.
7) Предел допускаемой относительной погрешности измерения
времени наработки ±0,1%;
8) 1 или 2 канала измерения расхода;
9) Формирование почасового архива значений объема и расхода;
10) Самодиагностика.
Принцип действия датчиков ДРК-4 основан на корреляционной дискриминации времени прохождения случайными, например, турбулентными флуктуациями расстояния между двумя парами ультразвуковых акустических преобразователей АП1-АП4, АП2-АП3. Это время транспортного запаздывания и является мерой расхода контролируемой среды, движущейся по трубопроводу. Во
время работы акустические преобразователи (АП1-АП4), возбуждаемые генераторами ультразвуковой частоты (ГУЧ1 и ГУЧ2), излучают ультразвуковые колебания. Эти колебания, пройдя через поток жидкости, порождают вторичные электрические колебания на АП. Из-за взаимодействия встречных ультразвуковых лучей с неоднородностями потока, обусловленными, например, турбулентностью этого потока, электрические колебания на АП оказываются модулированными. Эти колебания поступают на фазовые детекторы (ФД1 и ФД2) и далее на корреляционный дискриминатор (КД), управляемый микропроцессором.
В результате корреляционной обработки определяется время транспортного запаздывания, по которому микропроцессор производит вычисление периода
выходных импульсов и их формирование. Далее КД определяет объем нарастающим итогом, мгновенный расход, время наработки и выводит информацию на индикатор. Выходные импульсы преобразователя
ДРК-4ЭП могут передаваться для дополнительной обработки на тепловычислитель, счетчик-интегратор либо оконечный преобразователь ДРК-4ОП, который формирует унифицированный токовый выходной сигнал 0…5, 4…20 мА, пропорциональный мгновенному расходу.
Конструктивно датчик ДРК-4 состоит из комплекта первичных преобразователей ДРК$4ПП, электронного преобразователя ДРК-4ЭПХХ и оконечного преобразователя ДРК-4ОП. Комплект первичных преобразователей состоит из 4-х акустических преобразователей ДРК-4АП с соединительными кабелями длиной 3 м и 4-х штуцеров для монтажа их на трубопроводе.
Контроллер блока индикации суммирует входные импульсы, вычисляет накопленный объем нарастающим итогом и мгновенный расход, выводит эту информацию на индикатор, формирует двоичный код, характеризующий
мгновенный расход, который вводится в ЦАП, формирует архив.
Основные преимущества:
· отсутствие сопротивления потоку и потерь давления;
· возможность монтажа первичных преобразователей на трубопроводе при любой ориентации относительно его оси;
· коррекция показаний с учетом неточности монтажа первичных преобразователей;
· сохранение информации при отключении питания в течение 10 лет;
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 |



