Первоначально программисты сами должны были включать в тексты своих программ соответствующие обращения к операционной системе (их называют системными вызовами) и тщательно планировать, какие сегменты могут находиться в оперативной памяти одновременно, чтобы их адресные пространства не пересекались. Однако с некоторых пор такого рода обращения к операционной системе системы программирования стали подставлять в код программы сами, автоматически, если в том возникает необходимость. Так, в известной и популярной в недалеком прошлом системе программирования Turbo Pascal программист просто указывал, что данный модуль является оверлейным. И при обращении к нему из основной программы модуль загружался в память и получал управление. Все адреса определялись системой программирования автоматически, обращения к DOS для загрузки оверлеев тоже генерировались системой Turbo Pascal.

Распределение оперативной памяти в MS DOS

Как известно, MS DOS1 — это однопрограммная операционная система для персонального компьютера типа IBM PC. В ней, конечно, можно организовать запуск резидентных, или TSR-задач2, в результате которого в памяти будет находиться не одна программа, но в целом система MS DOS предназначена для выполнения только одного вычислительного процесса. Поэтому распределение памяти в ней построено по схеме простого непрерывного распределения. Система поддерживает механизм распределения памяти с перекрытием (оверлейные структуры).

Как известно, в IBM PC использовался 16-разрядный микропроцессор 18088, который за счет введения сегментного способа адресации позволял указывать адрес ячейки памяти в пространстве объемом до 1 Мбайт. В последующих персональных компьютерах (IBM PC AT, AT386 и др.) было принято решение поддерживать совместимость с первыми, поэтому при работе в DOS прежде всего рассматривают первый мегабайт. Вся эта память разделялась на несколько областей, что иллюстрирует рис. 3.2. На этом рисунке показано, что памяти может быть и больше, чем 1 Мбайт, но более подробное рассмотрение этого вопроса мы здесь опустим, отослав желающих изучить данную тему глубже к монографии [2].

FF 1 Кбайт

Таблица векторов прерываний

FF 51 2 байт

Глобальные переменные BIOS; глобальные переменные DOS

В ранних версиях здесь располагались глобальные переменные интерпретатора Бейсик

00600-ОАООО 35-60 Кбайт

SYS; Модуль MSDOS. SYS: - обслуживающие функции; - буферы, рабочие и управляющие области; - устанавливаемые драйверы; Резидентная часть : - обработка программных прерываний; - системная программа загрузки; - программа загрузки транзитной части

Размер этой области зависит от версии MSDOS и, главное, от конфигурационного файла CONFIG. SYS

580 Кбайт

Область памяти для выполнения программ пользователя и утилит MS DOS. В эту область попадают программы типа *.СОМ и *.ЕХЕ

Объем этой области очень зависит от объема, занимаемого ядром ОС. Программа может перекрывать транзитную область

Область расположения стека исполняющейся программы

Стек «растет» снизу вверх

18 Кбайт

Транзитная часть командного процессора

Собственно командный интерпретатор

AOOOO-C7FFF 160 Кбайт

Видеопамять. Область и размер используемого видеобуфера зависят от текущего режима

При работе в текстовом режиме область памяти АОООО-ВО и может быть использована в программе

С8000-ЕОООО 96 Кбайт

Зарезервировано для расширения BIOS

FOOOO-FFFF 64 Кбайт

Область ROM BIOS (System BIOS)

Обычно объем этой области равен 32 Кбайт, но может достигать и 128 Кбайт, занимая младшие адреса

Более 100000

High Memory Area.

При наличии драйвера HIMEM. SYS здесь можно расположить основные системные файлы MS DOS, освобождая тем самым область основной памяти в первом мегабайте

Может использоваться при наличии специальных драйверов. Используются спецификации XMS и EMS

Если не вдаваться в детали, можно сказать, что в состав MS DOS входят следующие основные компоненты.

·  Подсистема BIOS (Base Input-Output System — базовая подсистема ввода-вывода), включающая в себя помимо программы POST (Power On Self Test — самотестирование при включении компьютера)3 программные модули обработки прерываний, с помощью которых можно управлять основными контроллерами на материнской плате компьютера и устройствами ввода-вывода. Эти модули часто называют обработчиками прерываний. По своей функциональной сути они представляют собой драйверы. BIOS располагается в постоянном запоминающем устройстве компьютера. В конечном итоге почти все остальные модули MS DOS обращаются к BIOS. Если и не напрямую, то через модули более высокого уровня иерархии.

·  Модуль расширения BIOS — файл IO. SYS (в других DOS-системах он может называться иначе, например _ВЮ. СОМ).

·  Основной, или базовый, модуль обработки прерываний DOS — файл MSDOS. SYS. Именно этот модуль в основном реализует работу с файловой системой.

·  Командный процессор (интерпретатор команд) — файл .

·  Утилиты и драйверы, расширяющие возможности системы.

·  Программа загрузки MS DOS — загрузочная запись (Boot Record, BR), расположенная на дискете или на жестком диске (подробнее о загрузочной записи и о других загрузчиках см. главу 6).

Вся память в соответствии с архитектурой IBM PC условно может быть разбита на следующие три части.

·  В самых младших адресах памяти (первые 1024 ячейки) размещается таблица векторов прерывания (см. раздел «Система прерываний 32-разрядных микропроцессоров i80x86» в главе 4). Это связано с аппаратной реализацией процессора i8088. В последующих процессорах (начиная с i80286) адрес таблицы прерываний определяется через содержимое соответствующего регистра, но для обеспечения полной совместимости с первым процессором при включении или аппаратном сбросе в этот регистр заносятся нули. При желании, однако, в случае использования современных микропроцессоров i80x86 вектора прерываний можно размещать и в других областях.

·  Вторая часть памяти отводится для программных модулей самой системы MS DOS и для программ пользователя. Эту область памяти мы рассмотрим чуть позже, здесь только заметим, что она называется основной, или стандартной, памятью (conventional memory).

·  Наконец, третья часть адресного пространства отведена для постоянных запоминающих устройств и функционирования некоторых устройств ввода-вывода. Эта область памяти получила название UMA (Upper Memory Area — область памяти, адрес которой выше основной).

В младших адресах основной памяти размещается то, что можно условно назвать ядром этой операционной системы — системные переменные, основные программные модули, блоки данных для буферизации операций ввода-вывода. Для управления устройствами, драйверы которых не входят в базовую подсистему ввода-вывода, загружаются так называемые загружаемые, или устанавливаемые, драйверы. Перечень устанавливаемых драйверов определяется специальным конфигурационным файлом CONFIG. SYS. После загрузки расширения BIOS — файла IO. SYS - последний (загрузив модуль MSDOS. SYS) считывает файл CONFIG. SYS и уже в соответствии с ним подгружает в память необходимые драйверы. Кстати, в конфигурационном файле CONFIG. SYS могут иметься операторы, указывающие на количество буферов, отводимых для ускорения операций ввода-вывода, и на количество файлов, которые могут обрабатываться (для работы с файлами необходимо зарезервировать место в памяти для хранения управляющих структур, с помощью которых выполняются операции с записями файла). В случае использования микропроцессоров i80x86 и наличия в памяти драйвера HIMEM. SYS модули IO. SYS и MSDOS. SYS могут быть размещены за пределами первого мегабайта в области, которая получила название НМA (High Memory Area — область памяти с большими адресами).

Память с адресами, большими чем lOFFFFh, может быть использована в DOS-программах при выполнении их на микропроцессорах, имеющих такую возможность (например, микропроцессор i80286 имел 24-разрядную шину адреса, а i80386 - уже 32-разрядную). Но для этого с помощью специальных драйверов необходимо переключать процессор в другой режим работы, при котором он сможет использовать адреса выше lOFFFFh. Широкое распространение получили две основные спецификации: XMS (Extended Memory Specification) и EMS (Expanded Memory Specification). Последние годы система MS DOS практически перестала применяться. Теперь ее используют в основном для запуска некоторых утилит, с помощью которых подготавливают дисковые устройства, или для установки других операционных систем. И поскольку основным утилитам, необходимым для обслуживания персонального компьютера, спецификации EMS и XMS, как правило, не нужны, мы не будем здесь их рассматривать.

Остальные программные модули MS DOS (в принципе, большинство из них является утилитами) оформлены как обычные исполняемые файлы. Например, утилита форматирования диска представляет собой и двоичный исполняемый файл, и команду операционной системы. В основном такого рода утилиты являются транзитными модулями, то есть загружаются в память только на время своей работы, хотя среди них имеются и TSR-программы.

Для того чтобы предоставить больше памяти программам пользователя, в MS DOS применено то же решение, что и во многих других простейших операционных системах, — командный процессор состоит из двух частей. Первая часть является резидентной и размещается в области ядра, вторая часть транзитная и размещается в области старших адресов раздела памяти, выделяемой для программ пользователя. И если программа пользователя перекрывает собой область, в которой была расположена транзитная часть командного процессора, то последний при необходимости восстанавливает в памяти свою транзитную часть, поскольку после выполнения программы она возвращает управление резидентной части .

Поскольку размер основной памяти относительно небольшой, то очень часто системы программирования реализуют оверлейные структуры. Для этого в MS DOS поддерживаются специальные вызовы.

Распределение памяти статическими и динамическими разделами

Для организации мультипрограммного и/или мультизадачного режима необходимо обеспечить одновременное расположение в оперативной памяти нескольких задач (целиком или частями). Память задаче может выделяться одним сплошным участком (в этом случае говорят о методах неразрывного распределения памяти) или несколькими порциями, которые могут быть размещены в разных областях памяти (тогда говорят о методах разрывного распределения).

Начнем с методов неразрывного распределения памяти. Самая простая схема распределения памяти между несколькими задачами предполагает, что память, не занятая ядром операционной системы, может быть разбита на несколько непрерывных частей — разделов (partitions, regions). Разделы характеризуются именем, типом, границами (как правило, указываются начало раздела и его длина).

Разбиение памяти на несколько непрерывных (неразрывных) разделов может быть фиксированным (статическим) либо динамическим (то есть процесс выделения нового раздела памяти происходит непосредственно при появлении новой задачи). Вначале мы кратко рассмотрим статическое распределение памяти на разделы.

Разделы с фиксированными границами

Разбиение всего объема оперативной памяти на несколько разделов может осуществляться единовременно (то есть в процессе генерации варианта операционной системы, который потом и эксплуатируется) или по мере необходимости оператором системы. Однако и во втором случае при разбиении памяти на разделы вычислительная система более ни для каких целей в этот момент не используется. Пример разбиения памяти на несколько разделов приведен на рис. 3.3.

В каждом разделе в каждый момент времени может располагаться по одной программе (задаче). В этом случае по отношению к каждому разделу можно применить все те методы создания программ, которые используются для однопрограммных систем. Возможно использование оверлейных структур, что позволяет создавать большие сложные программы и в то же время поддерживать коэффициент мулътипрограммирования4 на должном уровне. Первые мультипрограммные операционные системы строились по этой схеме. Использовалась эта схема и много лет спустя при создании недорогих вычислительных систем, поскольку является несложной и обеспечивает возможность параллельного выполнения программ. Иногда в некотором разделе размещалось по нескольку небольших программ, которые постоянно в нем и находились. Такие программы назывались ОЗУ-резидентными (или просто резидентными). Та же схема используется и в современных встроенных системах; правда, для них характерно, что все программы являются резидентными, и внешняя память во время работы вычислительного оборудования не используется.

При небольшом объеме памяти и, следовательно, небольшом количестве разделов увеличить число параллельно выполняемых приложений (особенно когда эти приложения интерактивны и во время своей работы фактически не используют процессорное время, а в основном ожидают операций ввода-вывода) можно за счет замены их в памяти, или свопинга (swapping). При свопинге задача может быть целиком выгружена на магнитный диск (перемещена во внешнюю память), а на ее место загружается либо более привилегированная, либо просто готовая к выполнению другая задача, находившаяся на диске в приостановленном состоянии. При свопинге из основной памяти во внешнюю (обратно) перемещается вся программа, а не ее отдельная часть.

Серьезная проблема, которая возникает при организации мультипрограммного режима работы вычислительной системы, — защита как самой операционной системы от ошибок и преднамеренного вмешательства процессов в ее работу, так и самих процессов друг от друга.

В самом деле, программа может обращаться к любым ячейкам в пределах своего виртуального адресного пространства. Если система отображения памяти не содержит ошибок, и в самой программе их тоже нет, то возникать ошибок при выполнении программы не должно. Однако в случае ошибок адресации, что случается не так уж и редко, исполняющаяся программа может начать «обработку» чужих данных или кодов с непредсказуемыми последствиями. Одной из простейших, но достаточно эффективных мер является введение регистров защиты памяти. В эти регистры операционная система заносит граничные значения области памяти раздела текущего исполняющегося процесса. При нарушении адресации возникает прерывание, и управление передается супервизору операционной системы. Обращения задач к операционной системе за необходимыми сервисами осуществляются не напрямую, а через команды программных прерываний, что обеспечивает передачу управления только в предопределенные входные точки кода операционной системы и в системном режиме работы процессора, при котором регистры защиты памяти игнорируются. Таким образом, выполнение функции защиты требует введения специальных аппаратных механизмов, используемых операционной системой.

Основным недостатком рассматриваемого способа распределения памяти является наличие порой достаточно большого объема неиспользуемой памяти (см. рис. 3.3). Неиспользуемая память может быть в каждом из разделов. Поскольку разделов несколько, то и неиспользуемых областей получается несколько, поэтому такие потери стали называть фрагментацией памяти. В отдельных разделах потери памяти могут быть очень значительными, однако использовать фрагменты свободной памяти при таком способе распределения не представляется возможным. Желание разработчиков сократить столь значительные потери привело их к следующим двум решениям:

·  выделять раздел ровно такого объема, который нужен под текущую задачу;

·  размещать задачу не в одной непрерывной области памяти, а в нескольких областях.

Второе решение было реализовано в нескольких способах организации виртуальной памяти. Мы их обсудим в следующем разделе, а сейчас кратко рассмотрим первое решение.

Разделы с подвижными границами

Чтобы избавиться от фрагментации, можно попробовать размещать в оперативной памяти задачи плотно, одну за другой, выделяя ровно столько памяти, сколько задача требует. Одной из первых операционных систем, в которой был реализован такой способ распределения памяти, была OS MVT5 (Multiprogramming with a Variable number of Tasks — мультипрограммирование с переменным числом задач). В этой операционной системе специальный планировщик (диспетчер памяти) ведет список адресов свободной оперативной памяти. При появлении новой задачи диспетчер памяти просматривает этот список и выделяет для задачи раздел, объем которой либо равен необходимому, либо чуть больше, если память выделяется не ячейками, а некими дискретными единицами. При этом модифицируется список свободных областей памяти. При освобождении раздела диспетчер памяти пытается объединить освобождающийся раздел с одним из свободных участков, если таковой является смежным.

При этом список свободных участков памяти может быть упорядочен либо по адресам, либо по объему. Выделение памяти под новый раздел может осуществляться одним из трех основных способов:

·  первый подходящий участок;

·  самый подходящий участок;

·  самый неподходящий участок.

В первом случае список свободных областей упорядочивается по адресам (например, по возрастанию адресов). Диспетчер просматривает список и выделяет задаче раздел в той области, которая первой подойдет по объему. В этом случае, если такой фрагмент имеется, то в среднем необходимо просмотреть половину списка. При освобождении раздела также необходимо просмотреть половину списка. Правило «первый подходящий» приводит к тому, что память для небольших задач преимущественно будет выделяться в области младших адресов, и, следовательно, это увеличит вероятность того, что в области старших адресов будут образовываться фрагменты достаточно большого объема.

Способ «самый подходящий» предполагает, что список свободных областей упорядочен по возрастанию объема фрагментов. В этом случае при просмотре списка для нового раздела будет использован фрагмент свободной памяти, объем которой наиболее точно соответствует требуемому. Требуемый раздел будет определяться по-прежнему в результате просмотра в среднем половины списка. Однако оставшийся фрагмент оказывается настолько малым, что в нем уже вряд ли удастся разместить еще какой-либо раздел. При этом получается, что вновь образованный фрагмент попадет в начало списка, и в последующем его придется каждый раз проверять на пригодность, тогда как его малый размер вряд ли окажется подходящим. Поэтому в целом такую дисциплину нельзя назвать эффективной.

Как ни странно, самым эффективным способом, как правило, является последний, по которому для нового раздела выделяется «самый неподходящий» фрагмент свободной памяти. Для этой дисциплины список свободных областей упорядочивается по убыванию объема свободного фрагмента. Очевидно, что если есть такой фрагмент памяти, то он сразу же и будет найден, и, поскольку этот фрагмент является самым большим, то, скорее всего, после выделения из него раздела памяти для задачи оставшуюся область памяти можно будет использовать в дальнейшем.

Однако очевидно, что при любой дисциплине обслуживания, по которой работает диспетчер памяти, из-за того что задачи появляются и завершаются в произвольные моменты времени и при этом имеют разные объемы, в памяти всегда будет наблюдаться сильная фрагментация. При этом возможны ситуации, когда из-за сильной фрагментации памяти диспетчер задач не сможет образовать новый раздел, хотя суммарный объем свободных областей будет больше, чем необходимо для задачи. В этой ситуации можно организовать так называемое уплотнение памяти. Для уплотнения памяти все вычисления приостанавливаются, и диспетчер памяти корректирует свои списки, перемещая разделы в начало памяти (или, наоборот, в область старших адресов). При определении физических адресов задачи будут участвовать новые значения базовых регистров, с помощью которых и осуществляется преобразование виртуальных адресов в физические. Недостатком этого решения является потеря времени на уплотнение и, что самое главное, невозможность при этом выполнять сами вычислительные процессы.

Данный способ распределения памяти, тем не менее, применялся достаточно длительное время в нескольких операционных системах, поскольку в нем для задач выделяется непрерывное адресное пространство, а это упрощает создание систем программирования и их работу. Применяется этот способ и ныне при создании систем на базе контроллеров с упрощенной (по отношению к мощным современным процессорам) архитектурой. Например, при разработке операционной системы для современных цифровых АТС, которая использует 16-разрядные микропроцессоры Intel.

Сегментная, страничная и сегментно-страничная организация памяти

Методы распределения памяти, при которых задаче уже может не предоставляться сплошная (непрерывная) область памяти, называют разрывными. Идея выделять память задаче не одной сплошной областью, а фрагментами позволяет уменьшить фрагментацию памяти, однако этот подход требует для своей реализации больше ресурсов, он намного сложнее. Если задать адрес начала текущего фрагмента программы и величину смещения относительно этого начального адреса, то можно указать необходимую нам переменную или команду. Таким образом, виртуальный адрес можно представить состоящим из двух полей. Первое поле будет указывать на ту часть программы, к которой обращается процессор, для определения местоположения этой части в памяти, а второе поле виртуального адреса позволит найти нужную нам ячейку относительно найденного адреса. Программист может либо самостоятельно разбивать программу на фрагменты, либо можно автоматизировать эту задачу, возложив ее на систему программирования.

Сегментный способ организации виртуальной памяти

Первым среди разрывных методов распределения памяти был сегментный. Для этого метода программу необходимо разбивать на части и уже каждой такой части выделять физическую память. Естественным способом разбиения программы на части является разбиение ее на логические элементы — так называемые сегменты. В принципе, каждый программный модуль (или их совокупность, если мы того пожелаем) может быть воспринят как отдельный сегмент, и вся программа тогда будет представлять собой множество сегментов. Каждый сегмент размещается в памяти как до определенной степени самостоятельная единица. Логически обращение к элементам программы в этом случае будет состоять из имени сегмента и смещения относительно начала этого сегмента. Физически имя (или порядковый номер) сегмента будет соответствовать некоторому адресу, с которого этот сегмент начинается при его размещении в памяти, и смещение должно прибавляться к этому базовому адресу.

Преобразование имени сегмента в его порядковый номер осуществит система программирования. Для каждого сегмента система программирования указывает его объем. Он должен быть известен операционной системе, чтобы она могла выделять ему необходимый объем памяти. Операционная система будет размещать сегменты в памяти и для каждого сегмента она должна вести учет о местонахождении этого сегмента. Вся информация о текущем размещении сегментов задачи в памяти обычно сводится в таблицу сегментов, чаще такую таблицу называют таблицей дескрипторов сегментов задачи. Каждая задача имеет свою таблицу сегментов. Достаточно часто эти таблицы называют таблицами дескрипторов сегментов, поскольку по своей сути элемент таблицы описывает расположение сегмента.

Таким образом, виртуальный адрес для этого способа будет состоять из двух полей — номера сегмента и смещения относительно начала сегмента. Соответствующая иллюстрация приведена на рис. 3.4 для случая обращения к ячейке, виртуальный адрес которой равен сегменту с номером 11 со смещением от начала этого сегмента, равным 612. Как мы видим, операционная система разместила данный сегмент в памяти, начиная с ячейки с номером 19700.

Итак, каждый сегмент, размещаемый в памяти, имеет соответствующую информационную структуру, часто называемую дескриптором сегмента. Именно операционная система строит для каждого исполняемого процесса соответствующую таблицу дескрипторов сегментов, и при размещении каждого из сегментов в оперативной или внешней памяти отмечает в дескрипторе текущее местоположение сегмента. Если сегмент задачи в данный момент находится в оперативной памяти, то об этом делается пометка в дескрипторе. Как правило, для этого используется бит присутствия Р (от слова «present»). В этом случае в поле адреса диспетчер памяти записывает адрес физической памяти, с которого сегмент начинается, а в поле длины сегмента (limit) указывается количество адресуемых ячеек памяти. Это поле используется не только для того, чтобы размещать сегменты без наложения друг на друга, но и для того, чтобы контролировать, не обращается ли код исполняющейся задачи за пределы текущего сегмента. В случае превышения длины сегмента вследствие ошибок программирования мы можем говорить о нарушении адресации и с помощью введения специальных аппаратных средств генерировать сигналы прерывания, которые позволят фиксировать (обнаруживать) такого рода ошибки.

Если бит присутствия в дескрипторе указывает, что сегмент находится не в оперативной, а во внешней памяти (например, на жестком диске), то названные поля адреса и длины используются для указания адреса сегмента в координатах внешней памяти. Помимо информации о местоположении сегмента, в дескрипторе сегмента, как правило, содержатся данные о его типе (сегмент кода или сегмент данный), правах доступа к этому сегменту (можно или нельзя его модифицировать, предоставлять другой задаче), отметка об обращениях к данному сегменту (информация о том, как часто или как давно этот сегмент используется или не используется, на основании которой можно принять решение о том, чтобы предоставить место, занимаемое текущим сегментом, другому сегменту).

При передаче управления следующей задаче операционная система должна занести в соответствующий регистр адрес таблицы дескрипторов сегментов этой задачи. Сама таблица дескрипторов сегментов, в свою очередь, также представляет собой сегмент данных, который обрабатывается диспетчером памяти операционной системы.

При таком подходе появляется возможность размещать в оперативной памяти не все сегменты задачи, а только задействованные в данный момент. Благодаря этому, с одной стороны, общий объем виртуального адресного пространства задачи может превосходить объем физической памяти компьютера, на котором эта задача будет выполняться; с другой стороны, даже если потребности в памяти не превосходят имеющуюся физическую память, можно размещать в памяти больше задач, поскольку любой задаче, как правило, все ее сегменты единовременно не нужны. А увеличение коэффициента мультипрограммирования ц, как мы знаем, позволяет увеличить загрузку системы и более эффективно использовать ресурсы вычислительной системы. Очевидно, однако, что увеличивать количество задач можно только до определенного предела, ибо если в памяти не будет хватать места для часто используемых сегментов, то производительность системы резко упадет. Ведь сегмент, находящийся вне оперативной памяти, для участия в вычислениях должен быть перемещен в оперативную память. При этом если в памяти есть свободное пространство, то необходимо всего лишь найти нужный сегмент во внешней памяти и загрузить его в оперативную память. А если свободного места нет, придется принять решение — на место какого из присутствующих сегментов будет загружаться требуемый. Перемещение сегментов из оперативной памяти на жесткий диск и обратно часто называют свопингом сегментов.

Итак, если требуемого сегмента в оперативной памяти нет, то возникает прерывание, и управление передается через диспетчер памяти программе загрузки сегмента. Пока происходит поиск сегмента во внешней памяти и загрузка его в оперативную, диспетчер памяти определяет подходящее для сегмента место. .Возможно, что свободного места нет, и тогда принимается решение о выгрузке какого-нибудь сегмента и выполняется его перемещение во внешнюю память. Если при этом еще остается время, то процессор передается другой готовой к выполнению задаче. После загрузки необходимого сегмента процессор вновь передается задаче, вызвавшей прерывание из-за отсутствия сегмента. Всякий раз при считывании сегмента в оперативную память в таблице дескрипторов сегментов необходимо установить адрес начала сегмента и признак присутствия сегмента.

При поиске свободного места используется одна из вышеперечисленных дисциплин работы диспетчера памяти (применяются правила «первого подходящего» и «самого неподходящего» фрагментов). Если свободного фрагмента памяти достаточного объема нет, но, тем не менее, сумма этих свободных фрагментов превышает требования по памяти для нового сегмента, то в принципе может быть применено «уплотнение памяти», о котором мы уже говорили в подразделе «Разделы с фиксированными границами» раздела «Распределение памяти статическими и динамическими разделами».

В идеальном случае размер сегмента должен быть достаточно малым, чтобы его можно было разместить в случайно освобождающихся фрагментах оперативной памяти, но достаточно большим, чтобы содержать логически законченную часть программы с тем, чтобы минимизировать межсегментные обращения.

Для решения проблемы замещения (определения того сегмента, который должен быть либо перемещен во внешнюю память, либо просто замещен новым) используются следующие дисциплины6:

·  правило FIFO (First In First Out — первый пришедший первым и выбывает);

·  правило LRU (Least Recently Used — дольше других неиспользуемый);

·  правило LFU (Least Frequently Used — реже других используемый);

·  случайный (random) выбор сегмента.

Первая и последняя дисциплины являются самыми простыми в реализации, но они не учитывают, насколько часто используется тот или иной сегмент, и, следовательно, диспетчер памяти может выгрузить или расформировать тот сегмент, к которому в самом ближайшем будущем будет обращение. Безусловно, достоверной информация о том, какой из сегментов потребуется в ближайшем будущем, в общем случае быть не может, но вероятность ошибки для этих дисциплин многократно выше, чем у второй и третьей, в которых учитывается информация об использовании сегментов.

В алгоритме FIFO с каждым сегментом связывается очередность его размещения в памяти. Для замещения выбирается сегмент, первым попавший в память. Каждый вновь размещаемый в памяти сегмент добавляется в хвост этой очереди. Алгоритм учитывает только время нахождения сегмента в памяти, но не учитывает фактическое использование сегментов. Например, первые загруженные сегменты программы могут содержать переменные, требующиеся на протяжении всей ее работы. Это приводит к немедленному возвращению к только что замещенному сегменту.

Для реализации дисциплин LRU и LFU необходимо, чтобы процессор имел дополнительные аппаратные средства. Минимальные требования — достаточно, чтобы при обращении к дескриптору сегмента для получения физического адреса, с которого сегмент начинает располагаться в памяти, соответствующий бит обращения менял свое значение (скажем, с нулевого, которое устанавливает операционная система, в единичное). Тогда диспетчер памяти может время от времени просматривать таблицы дескрипторов исполняющихся задач и собирать для соответствующей обработки статистическую информацию об обращениях к сегментам. В результате можно составить список, упорядоченный либо по длительности простоя (для дисциплины LRU), либо по частоте использования (для дисциплины LFU).

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6