Расчет и анализ сетевых графиков

Основные понятия и определения

1.1. Сетевое планирование и управление (СПУ) - это система планирования комплекса работ, ориентированная на достижение конечной цели. СПУ основано на графическом изображении определенного комплекса работ, отражающих их логическую последовательность, взаимосвязь и длительность, с последующей оптимизацией разработанного графика при помощи методов прикладной математики и вычислительной техники и его использованием для текущего руководства этими работами.

Объектом управления в системе СПУ является коллектив людей, располагающий определенными ресурсами (людскими, материальными, финансовыми и др.) и выполняющий определенный комплекс работ (проект), призванный обеспечить достижение намеченной цели.

1.2. Сетевой график (сетевая модель или просто сеть) - это модель всего процесса выполнения данного комплекса робот, изображенная в виде ориентированного графа и отражающая взаимосвязь и параметры всех работ.

1.3. Работа - это трудовой процесс, приводящий к некоторому результату и требующий затрат времени и ресурсов. Работой считают и ожидание.

Ожидание - работа не требующая затрат труда (и других ресурсов), но требующая затрат времени.

Работа на сетевом графике обозначается сплошной линией со стрелкой.

Продолжительность работы указывается числом над стрелкой. Единицей измерения продолжительности работ может быть день, неделя, декада, месяц. Длина стрелки выбирается произвольно. Она не отражает продолжительности работы. Работа обозначается шифрами начального и конечного события (ij). Продолжительность работы tij.

Зависимость или фиктивная работа - логическая связь между двумя или несколькими событиями, не требующими затрат ни времени, ни ресурсов. На графике фиктивная работа обозначается пунктирной стрелкой.

1.4. Событие - это результат свершения одной или нескольких работ, дающий возможность начать одну либо несколько следующих работ. Событие не имеет продолжительности по времени, оно означает лишь факт свершения какой-то работы. Событие на графике изображается кружком (i), внутри которого, указывается номер его. Событие, за которым следует работа, называется начальным (обозначается индексом – i ), а которому предшествует робота - конечным (j). В сети существует одно исходное событие (J) и одно завершающее – ( С ).

I.5. Путь - это любая последовательность робот сетевой модели, в которой конечное событие каждой работы совпадает с начальным событием следующей за ней. Путь обозначается индексом (L). Продолжительность пути определяется суммой продолжительностей вводящих в данный путь, работ и обозначается t(L). Различают путь полный (L(J-C)), т. е. путь от исходного со­бытия до завершающего, и путь от любого события до другого L(m1- m2).

Критический путь - это полный путь, обладающий максимальной продолжительностью из всех возможных на данном графике – Lкр. В сетевом графике может быть несколько критических путей. Критический путь определяет срок выполнения данного комплекса работ (проекта в целом).

Определение времени выполнения работ

По построенной сетевой модели для каждой работы определяется ожидаемая продолжительность ее выполнения - tож, а также дисперсия времени выполнения работы - .

В системе СПУ применяются два способа определения времени выполнения работ. В том случае, если работа часто повторяется (то есть имеются некоторые нормативные данные о ее продолжительности), или имеет достаточно близкий прототип, то продолжительность работы определяется однозначно (сети с детерминированными оценками). Но для большинства работ, выполняющихся впервые (например, научно-исследовательских, экспериментальных, опытно-конструкторских) этого сделать нельзя. В этом случае продолжительность выполнения работ носит неопределенный характер и для оценки времени ее выполнения применяют методы математической статистики. Продолжительность работы считается случайной величиной, подчиненной определенному закону распределения и ожидаемое время ее выполнения (а также и дисперсия) рассчитывается по определенным аппроксимирующим формулам на основании экспертных оценок, полученных от ответственных исполнителей работ.

Рассчитанная таким образом продолжительность выполнения работы представляет собой, с известным приближением, математическое ожидание времени ее выполнения, как случайной величины, подчиненной принятому закону ее распределения.

В практике СПУ наиболее широкое применение получили следующие формулы для определения ожидаемой продолжительности работы и дисперсии времени ее выполнения.

Ниже приведены три разновидности этих формул, которые соответствуют вариантам индивидуальных заданий:

1-й способ ; ;

2-й способ ; ;

3-й способ ; .

Для расчета по этим формулам от ответственных исполнителей получают путем опроса следующие экспертные оценки времени выполнения работ:

а (или tmin) - минимальная (оптимистическая) продолжительность работы, т. е. оценка продолжительности работы в предположении наиболее благоприятного стечения обстоятельств;

b (или tmax) - максимальная (пессимистическая) продолжительность работы, т. е. продолжительность работы в предположении наиболее неблагоприятного стечения обстоятельств;

m (или tн. в.) - наиболее вероятная оценка продолжительности работы - оценка продолжительности при наиболее часто встречающихся условиях выполнения работы.

Расчет параметров сетевого графика

Параметрами сетевого графика называются величины, характеризующие положение работ и событий, которые дают возможность проанализировать состояние работ и принять необходимые решения. Исходными для определения всех временных параметров сетевых моделей служит продолжительность работы (tij). На основании продолжительности работ в сетевом графике определяются его временные параметры, основными из них являются следующие.

1. Продолжительность пути

,

где К - количество работ, входящих в данный путь.

Таким образом, продолжительность пути это суммарная продолжительность работ, составляющих данный путь.

Продолжительность критического пути

Ткр = t[L(J-C)max] .

Продолжительность критического пути определяет срок наступления завершающего события сети, то есть определяет срок выполнения проекта (планируемого комплекса работ) в целом.

2. Резерв времени пути - это разность между продолжительностью критического и данного пути. Он показывает, на сколько в сумме могут быть увеличены продолжительности работ, принадлежащих данному пути, не изменяя срока выполнения проектов

R(L) = Tкр - t(L) .

3. Ранний срок свершения события - срок, необходимый для выполнения всех работ, предшествующих данному событию i

Тр(i) = t[L(J-i)max] или Тр(j) = [Tp(i) + tij]max .

Ранний срок исходного события сети принимается равным нулю: Тр(J) = 0 .

4. Поздний срок свершения события - это наиболее поздний из допустимых сроков свершения события, превышение которого на какую-то величину вызывает аналогичную задержку наступления завершающего события

Тп(i) = Tкр - t[(i-C)max] или Тп(i) = [Тп(j)-tij]min .

Поздний срок завершающего события равен его раннему сроку Тп(С)=Тр(С), это же имеет место и для событий, лежащих на критическом пути Тр(i) = Тп(i).

5. Резерв времени свершения события - это такой предельно допустимый срок, на который можно задерживать свершение данного события, не вызывая при этом увеличения продолжительности критического пути (то есть не изменяя срока свершения завершающего события), то есть всего проекта в целом.

У событий, лежащих на критическом пути, резервов времени не существует. Резерв времени события определяется следующим образом:

R(i) = Tп(i) - Tp(i) = R(Lmax) .

Резерв времени события равен резерву времени максимального из путей, проходящих через данное событие.

6. Ранний срок начала работы - это самый ранний из возможных сроков начала работы: tр. н.(ij) = Tp(i) .

7. Ранний срок окончания работы - это самый ранний из возможных сроков окончания работы

tр. о.(ij) = tр. н.(ij) + tij = Tp(i) + tij .

8. Поздний срок начала работы - самый поздний срок начала работы, при котором не увеличивается продолжительность критического пути, т. е. срок окончания проекта в целом

tп. н.(ij) = tп. о.(ij) - tij = Tп(j) - tij .

9. Поздний срок окончания работы - самый поздний срок окончания работы, при котором не увеличивается продолжительность критического пути, то е. сть срок окончания проекта

tп. о.(ij) = Tп(j) .

Для работ критического пути:

tр. н.(ij) = tп. н.(ij) и tр. о.(ij) = tп. о.(ij) .

10. Полный резерв времени работы - это величина резерва времени максимального из путей, проходящих через данную работу. Он равен разности между поздним сроком наступления события и ранним сроком наступления события за вычетом продолжительности работы

Rп(ij) = Tп(j) - Tp(i) - tij .

Полный резерв времени работы показывает, на сколько может быть увеличена продолжительность отдельной работы или отсрочено ее начало, чтобы продолжительность проходящего через нее максимального пути не превысила продолжительности критического пути (то есть, чтобы не изменился срок выполнения проекта в целом).

Использование полного резерва целиком на данной работе отнимает все полные резервы времени у работ, лежащих на всех путях, которые проходят через данную работу.

Полный резерв времени работ критического пути равен нулю, а для остальных работ он положителен.

11. Свободный резерв времени работы - равен разности между ранними сроками наступления событий j и i за вычетом продолжительности работы (ij):

Rc(ij) = Tp(j) - Tp(i) - tij .

Свободный резерв представляет собой часть полного резерва времени работы. Он указывает максимальное время, на которое можно увеличить продолжительность отдельной работы, или отсрочить ее начало, не меняя ранних сроков начала последующих работ, при условии, что непосредственно предшествующее событие наступило в свой ранний срок.

В качестве плановых сроков начала работ берутся при этом ранние сроки наступления событий. Сводный резерв времени является в определенном смысле независимым резервом, то есть использование его на одной из работ не меняет величины свободных резервов времени остальных работ сети.

3.12. Коэффициент напряженности работы используется в сетевом планировании для характеристики напряженности сроков выполнения работ и определяется по следующей формуле:

,

где t(Lmax) - продолжительность максимального пути, проходящего через данную работу;

t¢(Lкр) - продолжительность отрезка пути t(Lmax), совпадающего с критическим путем.

С помощью коэффициента напряженности получают оценку напряженности работ, лежащих на путях равной продолжительности и обладающих одинаковыми резервами времени.

Величина коэффициента напряженности у разных работ в сети лежит в пределах 0 £ Кн(ij) £ i.

Для всех работ критического пути Кн(ij) = 1.

Величина коэффициента напряженности помогает при установлении плановых сроков выполнения работ оценить, насколько свободно можно располагать имеющимися резервами времени. Этот коэффициент дает исполнителям работ предоставления степени срочности работ и позволяет установить очередность их выполнения, если она не определяется технологическими связями работ.

Способы расчета параметров сетевых графиков

Существует два способа ручного расчета параметров сетевых графиков (причем, в литературе по СПУ встречаются различные разновидности данных способов): непосредственно на графике; табличный способ.

1. Первый способ (расчет параметров непосредственно на графике) предусматривает определение, как правило, следующих параметров, ранних сроков свершения событий, поздних сроков свершения событий, резервов времени свершения событий и критического пути. При расчете по этому способу кружок, изображающий событие, делится на четыре сектора. Верхний сектор отводится для номера события - i, левый сектор для раннего срока свершения события Тр(i), правый для позднего срока свершения события Тп(i), а нижний сектор для резерва времени свершения события - R(i)

 

Расчет параметров производится на основании приведенных выше определений и формул (логических соотношений) по определенным правилам. Расчет начинается с определения ранних сроков свершения событий - Tp(i). Определение Tp(i) начинается с исходного события и далее через последующие события к завершающему (то есть расчет ведется слева направо), руководствуясь следующим общим правилом для определения ранних сроков событий.

Ранний срок свершения события j определяется путем прибавления к раннему сроку предшествующего ему события i продолжительности работы, ведущей к событию j. В том случае, если в событие j входит несколько работ, нужно определить ранний срок по каждой из этих работ и из них выбрать максимальный, который и будет ранним сроком свершения события j. Для исходного события J ранний срок его свершения принимается равным нулю.

Tp(J) = 0 .

Определение поздних сроков свершения событий производится в обратном порядке, то есть справа налево, то есть от завершающего события к исходному. При определении поздних сроков принимается, что для завершающего события ранний срок его свершения является одновременно и наиболее поздним.

Тр(С) = Тп(С) .

Поздний срок свершения события j определяется путем вычитания из позднего срока предшествующего ему события i продолжительности работы, ведущей к этому событию j.

В случае, если к событию j подходит несколько работ, то определяется величина позднего срока по каждой из этих работ и из них выбирается минимальная, которая и будет определять поздний срок свершения данного события.

Резерв времени события i определяется непосредственно на сети путем вычитания из величины, записанной в правом секторе события Тп(i) величины, записанной в левом секторе - Тр(i). Найденная величина и является резервом времени свершения события и записывается в нижнем секторе события.

Все события в сети, за исключением событий, принадлежащих критическому пути, имеют резерв времени. Критический путь определится в результате выявления всех последовательно лежащих событий с резервами, равными нулю, а его продолжительность величиной позднего (тоже самое раннего) срока свершения завершающего события.

На рис. 1 приведен расчет сети непосредственно на графике.

 

Рис. 1. Расчет параметров сетевого графика

двойная стрелка - критический путь

2. При табличном способе расчета определяются, как правило, параметры, относящиеся к работам, а именно: ранние и поздние сроки начал и окончаний работ, резервы времени работ. Расчет параметров в этом случае производится в таблице по определенной форме. Пример такого расчета для сетевого графика, изображенного на рис. 1, показан в нижеприводимой табл. 1.

Расчет табличным способом может производиться либо только на основании формул и сетевого графика с параметрами событий, либо по определенным правилам (алгоритмам). В последнем случае состав параметров и последовательность их расположения может быть иной. Расчет по таким алгоритмам излагается в литературе (см. список литературы).

Таблица 1

Расчет параметров работ сетевого графика

Код

работы,

i-j

Продолжительность работы, tij

Раннее начало работы, tр. н.

Раннее окончание работы, tр. о.

Позднее начало работы, tп. н.

Позднее окончание работы, tп. о.

Резервы времени

работы

Коэффициент напряженности работы, Кн

полный, Rп

свободный, Rс

0-1

2

0

2

0

2

0

0

1

0-2

1

0

1

2

3

2

0

0,6

0-3

3

0

3

1

4

1

0

8/9

1-4

3

2

5

2

5

0

0

1

3-5

1

3

4

4

5

1

0

8/9

2-4

2

1

3

3

5

2

2

0,6

2-5

2

1

3

3

5

2

1

7,9

4-6

4

5

9

5

9

0

0

1

5-6

4

4

8

5

9

1

1

8/9

Анализ и оптимизация сетевого графика

После расчета параметров сетевого графика производится его анализ, и в нужных случаях, его оптимизация. Задачами анализа является пересмотр структуры сети с целью определения возможности увеличения числа параллельно выполняемых работ, определение коэффициентов напряженности работ, что позволяет наряду с расчетом резервов времени работ и путей, распределить все работы по зонам (критическая, подкритическая и резервная). Важной задачей анализа сетевого графика является определение вероятности свершения завершающего события в заданный срок.

Заданный срок свершения завершающего события (то есть директивный срок выполнения проекта) Тд может отличаться от расчетного Ткр, полученного на основе критического пути, но, несмотря на это (в силу того, что ожидаемые продолжительности работ определялись как случайные величины) сохраняется определенная вероятность, что завершающее событие наступит в заданный директивный срок или раньше его. При определении этой вероятности принимается, что продолжительность выполнения проекта (то есть величина критического пути) является случайной величиной, подчиняющейся нормальному закону распределения.

Аналитическая вероятность того, что завершающее событие наступит в заданный (директивный) срок или ранее него, определяется следующим образом:

,

где - соответствующее значение функции Ф(Z), взятое из таблицы нормального распределения; Z - аргумент нормальной функции распределения вероятности.

Среднее квадратичное отклонение срока наступления завершающего события определяется по формуле:

,

где ijкр - последовательность работ, лежащих на критическом пути;

К - количество работ, составляющих критический путь;

- дисперсия работы, лежащей на критическом пути.

Пример. Для графика, изображенного на рис. 1, определить вероятность выполнения проекта в заданный директивный срок, равный 8 ед. времени. Ранее было определено, что расчетный срок выполнения проекта составляет Ткр = 9 ед. Предположим, что также определены и дисперсии работ, составляющих критический путь, пусть например:

,

тогда и .

Пользуясь таблицей значений функции Лапласа по величине Z = - 1,7 (см. табл. 2), находим искомую вероятность РК » 0,045.

Вывод. При планировании в системах СПУ принято, что если:

0,85 < РК < 0,65 - то это считается границами допустимого риска (то есть считается нормальным положением); при РК < 0,85 - то считается, что опасность нарушения заданного срока очень большая (неприемлема) и необходимо в этом случае и произвести повторное планирование с перераспределением ресурсов с целью минимизации срока выполнения проекта; при РК > 0,65 - считается вероятность слишком велика, то есть на работах критического пути имеются избыточные ресурсы. В этом случае тоже производят повторное планирование с целью сокращения потребных ресурсов.

При невозможности достижения удовлетворительного значения РК может потребоваться изменение заданного срока выполнения проекта. Эта задача решается как обратная рассмотренной выше. Задаваясь желаемой величиной вероятности РК свершения завершающего события в заданный срок, можно из вышеприведенного уравнения определить значение функции , и, зная величины Ткр и , определить величину Тд.

После анализа сетевого графика в необходимых случаях проводится его оптимизация. Она необходима для обеспечения большей надежности свершения завершающего события в заданный срок, для выравнивания загрузки работников, лучшего распределения ресурсов и т. д. Оптимизация графика во времени (то есть достижение минимального срока выполнения проекта при заданных ресурсах) производится путем переброски ресурсов с некритических путей, имеющих резервы времени, на критический путь, что приводит к сокращению его продолжительности. В пределе продолжительности всех полных путей могут быть равны и являются критическими и тогда все работы ведутся с одинаковым напряжением, а общий срок выполнения проекта существенно сократится.

Таблица 2

Таблица значений функции Лапласа Рк = Ф (Z)

Z

Pk

Z

Pk

Z

Pk

Z

Pk

0,0

0,5000

1,6

0,9452

-3

0,0013

-1,4

0,0803

0,1

0,5398

1,7

0,9554

-2,9

0,0019

-1,3

0,0968

0,2

0,5793

1,8

0,9641

-2,8

0,0026

-1,2

0,1151

0,3

0,6179

1,9

0,9713

-2,7

0,0035

-1,1

0,1357

0,4

0,6554

2,0

0,9772

-2,6

0,0047

-1,0

0,1587

0,5

0,6915

2,1

0,9821

-2,5

0,0062

-0,9

0,1841

0,6

0,7257

2,2

0,9861

-2,4

0,0082

-0,8

0,2119

0,7

0,7580

2,3

0,9893

-2,3

0,0107

-0,7

0,2420

0,8

0,7881

2,4

0,9918

-2,2

0,0139

-0,6

0,2743

0,9

0,8159

2,5

0,9838

-2,1

0,0179

-0,5

0,3085

1,0

0,8413

2,6

0,9953

-2,0

0,0228

-0,4

0,3446

1,1

0,8643

2,7

0,9965

-1,9

0,0287

-0,3

0,3821

1,2

0,8849

2,8

0,9974

-1,8

0,0359

-0,2

0,4207

1,3

0,9032

2,9

0,9981

-1,7

0,0446

-0,1

0,4602

1,4

0,9192

3,0

0,9987

-1,6

0,0548

-0,0

0,5000

1,5

0,9332

-

-1,5

0,0668

Проекты по теме:

Основные порталы (построено редакторами)

Домашний очаг

ДомДачаСадоводствоДетиАктивность ребенкаИгрыКрасотаЖенщины(Беременность)СемьяХобби
Здоровье: • АнатомияБолезниВредные привычкиДиагностикаНародная медицинаПервая помощьПитаниеФармацевтика
История: СССРИстория РоссииРоссийская Империя
Окружающий мир: Животный мирДомашние животныеНасекомыеРастенияПриродаКатаклизмыКосмосКлиматСтихийные бедствия

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организации
МуниципалитетыРайоныОбразованияПрограммы
Отчеты: • по упоминаниямДокументная базаЦенные бумаги
Положения: • Финансовые документы
Постановления: • Рубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датам
Регламенты
Термины: • Научная терминологияФинансоваяЭкономическая
Время: • Даты2015 год2016 год
Документы в финансовой сферев инвестиционнойФинансовые документы - программы

Техника

АвиацияАвтоВычислительная техникаОборудование(Электрооборудование)РадиоТехнологии(Аудио-видео)(Компьютеры)

Общество

БезопасностьГражданские права и свободыИскусство(Музыка)Культура(Этика)Мировые именаПолитика(Геополитика)(Идеологические конфликты)ВластьЗаговоры и переворотыГражданская позицияМиграцияРелигии и верования(Конфессии)ХристианствоМифологияРазвлеченияМасс МедиаСпорт (Боевые искусства)ТранспортТуризм
Войны и конфликты: АрмияВоенная техникаЗвания и награды

Образование и наука

Наука: Контрольные работыНаучно-технический прогрессПедагогикаРабочие программыФакультетыМетодические рекомендацииШколаПрофессиональное образованиеМотивация учащихся
Предметы: БиологияГеографияГеологияИсторияЛитератураЛитературные жанрыЛитературные героиМатематикаМедицинаМузыкаПравоЖилищное правоЗемельное правоУголовное правоКодексыПсихология (Логика) • Русский языкСоциологияФизикаФилологияФилософияХимияЮриспруденция

Мир

Регионы: АзияАмерикаАфрикаЕвропаПрибалтикаЕвропейская политикаОкеанияГорода мира
Россия: • МоскваКавказ
Регионы РоссииПрограммы регионовЭкономика

Бизнес и финансы

Бизнес: • БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумаги: • УправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги - контрольЦенные бумаги - оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудит
Промышленность: • МеталлургияНефтьСельское хозяйствоЭнергетика
СтроительствоАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством