ГАЛАКТОЦЕНТРИЧЕСКАЯ ПАРАДИГМА И ЕЕ СЛЕДСТВИЯ
Кратко излагаются основные положения галактоцентрической парадигмы [1], связывающей цикличность геологических процессов на Земле с космическими явлениями в Галактике и в Солнечной системе. Обосновано новое видение природы и строения спиральных галактик. На единой методологической основе предложены согласованные решения ряда фундаментальных проблем астрономии и наук о Земле. Создана необходимая база для тесного сближения геологической и космической областей знаний.
1. Введение
В последнее время все большее число исследователей объясняет глобальные геологические события в истории Земли воздействиями Галактики [2-14]. Впервые на эту связь обращено внимание в середине 1950-ых годов [15] после того, как астроном [16] вычислил период орбитального движения Солнца в Галактике. И этот период оказался близким к продолжительности известного геологического цикла ~млн. лет. Позднее были выдвинуты идеи, объяснявшие галактическим движением Солнца также геологические циклы меньшей продолжительности ~20¸80 млн. лет.
В качестве причин геологической цикличности обычно называют изменение гравитационного потенциала Галактики на разном удалении от ее центра, вариации скорости движения Солнца по орбите, пересечение Солнцем спиральных галактических рукавов, а также его колебания перпендикулярно галактической плоскости. Однако физические механизмы влияния Галактики на конкретные природные процессы нашей планеты в этих гипотезах остаются сугубо гипотетическими и проблематичными.
Автором показано [1], что сложившееся положение вызвано слабой разработанностью ряда принципиальных вопросов астрономического характера. В частности, отсутствием адекватной физической модели Галактики, а также удовлетворительной модели ее спирального строения. В последние годы к этим трудностям добавились нерешенные проблемы темной материи и темной энергии, что еще более осложнило ситуацию.
Более 25 лет автор занимается данным кругом вопросов в связи с изучением влияния физических процессов в Галактике на геологическое развитие Земли. Результаты этих исследований положены в основу новой естественнонаучной концепции – «галактоцентрической парадигмы» [1]. Новая парадигма призвана согласовать астрономическую и геологическую области знаний в рамках более общей системы представлений. Ее отличительной особенностью является учет влияния на Землю и другие планеты Солнечной системы важного астрофизического явления – струйного истечения газопылевого вещества из центра спиральных звездных систем.
Данное явление, долго ускользавшее от внимания исследователей, позволяет однозначно связать основные геологические события в истории Земли с воздействиями Галактики в моменты попадания Солнечной системы в струйные потоки и спиральные галактические рукава. Тем самым появляется возможность изучения вопросов строения и физики Галактики методами геологии, как и решения назревших геологических проблем по данным астрономии и космических исследований в Солнечной системе.
Настоящий обзор знакомит с основными положениями галактоцентрической парадигмы и некоторыми результатами ее применения в «космическом естествознании». В виду большого объема материала, многие вопросы излагаются конспективно и часто без ссылок на публикации, примыкающие к тематике обзора. Ограниченность объема обзора также не позволяет остановиться на решении проблем космогонии [1], являющихся неотъемлемой частью развиваемых представлений.
2. Галактики эллиптические и спиральные
В основе современного подразделения галактик на эллиптические и спиральные (рис. 1) лежат конфигурации этих систем на оптических фотографиях.
Рис.1. Морфологическая классификация галактик по Э. Хабблу [17]. По внешнему виду Хаббл подразделил все галактики на два основных класса: эллиптических (тип Е) и спиральных (типы S и SB), объединив их в виде «вилки». Дж. Джинс [18] дал эволюционную трактовку этой диаграммы, предположив, что со временем галактики перемещаются от E к S (горизонтальная стрелка). Сдвоенными вертикальными стрелками показаны возможные преобразования спиральных галактик в модели [1].
Последующие исследования, однако, показали, что при фотографировании галактик с различными фильтрами и разной длительностью экспозиции конструкции этих систем могут существенно меняться. У ряда спиральных галактик происходит смещение положений отдельных спиральных рукавов. И даже начинают наблюдаться ранее неизвестные спиральные ветви [19]. Наиболее разительно меняются привычные очертания галактик при переходе от наблюдений в оптике к радиодиапазону [20]. В этом случае ~10% галактик с так называемым активным ядром, многие из которых относятся к типу Е, обнаруживаются радиоизлучающие джеты, которые отстоят от галактики на большие расстояния и могут удаляться от нее с субсветовыми скоростями [21].
Природа джетов долгое время оставалась проблематичной [21, 22]. Недавно автором показано [23], что джеты представляют собой систему генерируемых галактикой электромагнитных спиралей. В них космическая плазма ускоряется продольным электрическим полем спиралей до релятивистских энергий. Систем таких спиралей разного размера, вложенных друг в друга, у галактик может наблюдаться несколько [24].
Две разные системы ветвей, одна с логарифмическим, а другая – с архимедовым типом закрученности спиралей имеются и у обычных спиральных галактик (табл. 1).
Таблица 1.
Характеристики галактических ветвей по С. Данверу [25] и Караченцевым [26]
Характерная особенность
Данвер (1942)
Караченцевы (1967)
Исследовавшаяся выборка:
Число галактик
Число ветвей
98
190
121
237
Тип закрученности спиральных ветвей
логарифмический
архимедов
Математическая формула
R(j) = R(0) exp(aj)
R(j) = R(0) + rj
Различие в параметрах закрученности разных ветвей одной галактики
может быть
значительным
отсутствует
Различие в параметрах закрученности ветвей по всей выборке галактик
большое,
0.06 £ a £ 0.73
в пределах ошибок
методики, Dr/r ~10%
Разность длин ветвей одной галактики
67.2°
27.5°
Средняя длина ветвей
300°
250°
Существование у галактик архимедовых ветвей астрономами, однако, отрицается [19] под предлогом ошибочности работы [26]. Автором доказано, что причина расхождений результатов Данвера и Караченцевых обусловлена не ошибками измерений, а одновременным существованием у спиральных галактик двух систем ветвей разной природы [1, 27]. В силу специфики применявшихся методик С. Данвер выявил и изучал параметры ветвей одной спиральной системы, а Караченцевы – другой.
Тем самым, спиральность галактик является гораздо более сложным и комплексным астрофизическим явлением, чем сегодня упрощенно полагают [22, 28].
3. Астрономические доказательства струйного истечения
Струйное истечение как астрофизическое явление, присущее спиральным звездным системам, было теоретически обосновано Дж. Джинсом в 1929 году [29]. Как астрономический феномен оно было фактически открыто в нашей Каптейном [30] на четверть века раньше. Однако задолго до того, в 1812 году, на некоторые его катастрофические для Земли геологические следствия обратил внимание Ж. Кювье [31].
Астрономически данное явление проявляется в наличии у спиральных галактик системы архимедовых ветвей. Согласно нашей интерпретации наблюдений В. Бааде [32] в галактике М 31 (рис. 2), эти ветви берут начало из отдельных «точек» ее быстро вращающегося газопылевого ядерного диска. Вещество архимедовых ветвей участвует лишь в радиальном истечении из диска с неизменной скоростью VS = 300 км/с. Тогда как сам диск вращается с постоянной угловой скоростью wо = 1.26´10-7 лет [27].
Это обстоятельство позволяет рассматривать архимедовы ветви, характеризующиеся параметром закрученности r = VS/wо = 2.5 кпк/рад, как предсказанные Дж. Джинсом струйные потоки вещества, истекающие из центра спиральных галактик.
Рис. 2. Интерпретация спиральной структуры галактики М 31 на графике в полярных координатах [27]: точки S - правое крыло галактики, а точки N – левое крыло. Штриховой линией показан радиус ядерного диска галактики. I-IV – номера установленных нами архимедовых ветвей. Справа дано описание состава населения ветвей, принадлежащее В. Бааде[32].
В своем основании струйные потоки представлены темной газопылевой материей. Она по мере удаления от центра осветляется, и в ней происходят процессы газоконденсации и звездообразования. Эти процессы достигают максимума на удалении 5¸10 кпк от центра. Здесь потоки газопылевого вещества пересекают два спиральных логарифмических рукава, выявленных в М31 Х. Арпом (рис. 3).
Рис. 3. Система логарифмических ветвей М 31 по Х. Арпу [33]. Заштрихованы области свечения газа, которые Арп использовал для выявления спиральной структуры М 31
Ветвление архимедовых спиралей Бааде и логарифмических спиралей Арпа начинается в областях М 31, отвечающих разным максимумам тангенциальной скорости на кривой дифференциального вращения галактики (рис. 4).
Рис. 4. Кривая вращения М 31 [19]. Максимум слева вызван вращением ядерного диска; второй максимум, отвечающий началу ветвления логарифмических спиралей, а также глубокий минимум между максимумами обусловлен функцией распределением гравитационного потенциала галактики [1].
Логарифмические рукава вращаются вокруг центра галактики с более низкой угловой скоростью, чем у ядерного диска. Благодаря существующему в них электромагнитному полю, эти рукава частично захватывают и увлекают за собой ионизированную компоненту струйных потоков, накапливая в себе газопылевое вещество.
Места пересечения струйных потоков и логарифмических рукавов являются в галактиках областями наиболее интенсивного звездообразования. В процессе дифференциального вращения галактики эти области перемещаются по спиральным ветвям, определяя величину и знак градиентов возрастов молодых звезд. Рождающиеся звезды, однако, ведут себя по-разному. Одни образуются из газа и пыли рукавов, остаются в галактике, и, подобно нашему Солнцу, со временем приобретают самостоятельные круговые орбиты. Другие возникают из вещества струйных потоков и наследуют их скорость VS. Эволюционируя и теряя яркость по экспоненциальному закону (рис. 5), эти звезды за время ~30 млн. лет навсегда покидают видимые пределы галактики.
Рис. 5. Число ассоциаций молодых ОВ звезд в отдельных кольцевых зонах в плоскости М 31 [34]. Далее 12-15 кпк от центра численность ОВ звезд уменьшается с расстоянием по вероятностному закону. Все эти ОВ - ассоциации принадлежат струйным потокам Бааде (см. рис.2). Параметр L соответствует их радиальному движению со скоростью VS = 300 км/с [27].
Изложенные представления, реализующие идеи Дж. Джинса [29] и В. Бааде [32], положены в основу разработанной динамической модели спирального строения галактик [1]. Модель позволяет рассчитать продольный и поперечный градиенты возрастов молодых звезд в архимедовых и логарифмических ветвях, вычислить длину этих ветвей, а также объяснить ряд других наблюдаемых у спиральных галактик особенностей.
Некоторые результаты вычислений для галактики М31 приведены на рис. 6 [27]
Рис. 6. Расчетные значения градиентов молодых звезд (g), а также угловой (w) и радиальной (V) скоростей перемещения волны звездообразования в спиральных ветвях Арпа и Бааде как функция расстояния до центра М 31: 1, 2 - продольные градиенты возрастов звезд, соответственно, в спиралях Арпа и Бааде; 3, 4 - угловые скорости перемещения волны звездообразования в спиралях Арпа и Бааде; 5 - радиальная скорость движения волны звездообразования в спиралях Бааде и Арпа.
Расстояние от центра галактик R* = r/a, отвечающее равенству радиусов кривизны архимедовых и логарифмических ветвей, является выделенным. На данном расстоянии скорость перемещения точки звездообразования в ветвях обоих типов стремиться к бесконечности, что приводит к нулевым градиентам возрастов молодых звезд.
В волновой теории строения спиральных галактик [22, 28, 35] величину R* называют «радиусом коротации», а сам эффект объясняют совпадением скоростей вращения вещества галактического диска и бегущей по нему спиральной волны плотности. Такое объяснение, однако, спорно. Во-первых, у одной галактики может быть несколько радиусов R*, количество которых определяется числом ее логарифмических ветвей с индивидуальными параметрами a. И, во-вторых, наиболее интенсивное звездообразование идет не по всему краю логарифмических спиральных рукавов, а только на тех их участках, где они пересекается струйными потоками.
На примере М 31 и нашей звездной системы показано [1], что построенная модель объясняет все наблюдаемые эффекты, доступные интерпретации с позиций теории волн плотности [36], причем позволяет сделать это с большей полнотой и количественной точностью, не требуя введения каких-либо дополнительных предположений.
4. Модель изотермической сферы
Из звездной динамики известно, что если дать возможность большой совокупности звезд под действием взаимного гравитационного притяжения принять устойчивую конфигурацию, они образуют сферу, состоящую из внутреннего изотермического ядра и внешнего более протяженного гало [37]. В границах изотермического ядра (кроме его центральной зоны) гравитационный потенциал системы U(R) постоянен и движение звезд по скоростям и направлениям носит максвелловский характер.
Далеко за пределами изотермического ядра системы – во внешнем гало, у звезд начинает преобладать радиальная компонента скорости, и наиболее быстрые из них покидают систему. Во внутренней области системы, где численность звезд достигает максимума, они могут испытывать частые взаимные сближения и разрушаться [38].
В самом центре изотермического ядра – в точке сингулярности, U(R) ¹ const, что может способствовать накоплению здесь газопылевого вещества распавшихся звезд и формированию из него молодых звезд или даже черной дыры.
В переходной области между изотермическим ядром и гало распределение гравитационного потенциала звездной системы может быть представлено разложением в асимптотический ряд
, где сk – постоянные коэффициенты. (1)
Вследствие разрушения звезд в центре системы и утечки звезд из гало, изотермическая сфера галактик физически неустойчива. Со временем общее количество звезд в системе уменьшается, а ее изотермическое ядро сжимается, приводя к коллапсу системы. В ходе эволюции звездных скоплений квазиравновесное состояние их изотермической сферы сохраняется, а темп утечки звезд не меняется [39].
Такая модель, получившая название модели звездной изотермической сферы, широко используется в астрономии при описании строения и свойств шаровых звездных скоплений [37, 39]. Однако для объяснения природы галактик эта модель, до открытия явления струйного истечения, не находила применения. Смущало три обстоятельства.
Во-первых, наблюдаемое распределение ярких звезд в эллиптических и особенно в спиральных галактиках не сферично. Во-вторых, вследствие интенсивного разрушения звезд в ядре, здесь может возникнуть «черная дыра», которая резко сократит время коллапса. И, наконец, третья причина связана с тем, что системы с массой галактик достигают равновесия за время, превышающее общепринятый возраст Вселенной.
Явление струйного истечения позволяет выйти из этого трудного положения.
5. Новый взгляд на природу галактик
Наши исследования показывают [40], что учет выноса вещества разрушенных звезд из центра звездной системы струйными потоками делает физическую модель изотермической сферы вполне применимой и к объяснению спиральных галактик.
Только вот сами спиральные галактики оказываются иными. Это не плоские диски из звезд с большим или меньшим утолщением в центре, по которым бегут спиральные волны плотности [22]. А огромные квазисферические звездные системы, пребывающие в стадии повторного звездообразования. Состоят они главным образом из старых давно проэволюционировавших звезд, очень слабо проявляющих себя в излучении. Размер спиральных галактик не ограничивается их центральной зоной, в которой сосредоточены молодые яркие звезды, а простирается в десятки раз дальше этого расстояния.
Мало чем отличаются от них и галактики эллиптические. Поэтому все галактики (рис. 1) не зависимо от типа являются звездными формированиями одной природы. Это испытывающие эволюцию сферические системы, которые пребывают в состоянии динамического равновесия и различаются морфологией области интенсивного образования звезд. У эллиптических галактик звездообразование происходит в центре, у спиральных галактик в основном – в их ветвях.
По представлениям Дж. Джинса [18], эволюция галактик сопровождается их перемещением вдоль хаббловской последовательности типов в направлении от E к S вплоть до полного расформирования системы – стадия «неправильных» галактик [19]. Согласно нашим выводам [40], эти изменения, обусловлены уменьшением числа и общей массы звезд в изотермической сфере системы.
По мере перехода от эллиптических типов к спиральным масса галактик убывает, а угловой момент вращения растет (рис. 7).
Рис. 7. Арпа [41]
На определенном этапе эволюции галактик (стадия S0) в их центре возникает газопылевой ядерный диск, и система из «эллиптической» трансформируется в «спиральную». Подразделение спиральных галактик на S - и SB-типы в нашей модели обусловлено наличием у них двух разных систем ветвей, образующих самостоятельные плоскости. Одна – архимедова, представлена истекающим из ядерного диска веществом, а вторая – логарифмическая, повторяющая конфигурацию галактического электромагнитного поля. Системы с малым углом между плоскостями относят к «нормальным» S-спиралям, а с большим – классифицируют как «пересеченные» SB-спирали.
На основе данных геологии автором изучалась скорость эволюции Галактики для последних 3.6 млрд. лет ее развития. Измерения показали, что все это время распределение звезд в Галактике оставалось равновесным, а темп их разрушения в галактическом ядре был постоянен и равен 8.8 масс Солнца в год [40]. Последний вывод хорошо согласуется с результатами современных астрономических наблюдений [42].
Эти данные позволяют заключить, что с момента образования Солнца (4.7 млрд. лет назад) в ядре Галактики переработана в пыль и газ масса звезд 4´1010 МО, что привело к уменьшению центральной массы нашей звездной системы на ~15% отн.
Главный наш вывод состоит в том, что строение и эволюцию галактик определяют пять основных физических процессов: 1) «перемешивание» траекторий звезд в совокупном гравитационном поле (релаксация), 2) изотермическое сжатие центральной области (коллапс), 3) разрушение звезд в ядре с накоплением их продуктов распада в центральном диске (поглощение), 4) удаление газопылевого вещества из центра системы струйными потоками и 5) возникновение из газа и пыли при их распространении в галактической плоскости новых поколений звезд (звездообразование).
Соотношение характерных времен этих процессов в Галактике таково, что разрушение звезд и последующий вынос газа и пыли струйными потоками, с одной стороны, предохраняет систему от быстрого коллапса, а с другой – компенсируется другими звездами системы, которые стягиваются к ее ядру. Одновременно молодые звезды, рождающиеся в галактической плоскости, переходят в ядро и окружающий его балдж.
В спиральных галактиках это приводит к возрастной стратификации молодых звезд относительно галактической плоскости и придает распределению более старых звезд форму эллипсоида вращения. У наиболее старых звезд распределение становится полностью сферически симметричным без всякого намека на галактическую плоскость.
Тем самым, мы приходим к принципиальному заключению, что центры галактик являются своеобразным «молохом», перемалывающим звезды в газ и пыль. Причем не только перемалывающим, но и созидающим вместо них новые поколения звезд. Выбрасывая их вместе с газопылевой материей в межгалактическое пространство, галактики тем самым «омолаживают» Вселенную, поддерживая в ней постоянный круговорот вещества.
Данный вывод, а также другие свойства галактик [19, 22, 41, 43], по мнению автора, гораздо лучше укладываются в представления, согласно которым галактики – это спонтанно образующиеся и распадающиеся сгущения звезд и газа, неравномерно заполняющих доступную нашему изучению область Вселенной.
6. Спиральная модель Галактики
Из-за неполноты наблюдательной астрономической информации и низкой ее точности вопрос о спиральном строении нашей звездной системы у астрономов пока еще очень далек от своего разрешения [43, 44, 45].
Построенная нами с привлечением данных геологии спиральная модель Галактики [46], отвечающая изложенным представлениям, приведена на рис. 8. В отличие от М31 наша Галактика имеет четыре логарифмические ветви и лишь два струйных потока.
Потоки выходят из диаметральных точек ядерного газопылевого диска Галактики, который наклонен на угол »22° [43] к плоскости логарифмических рукавов и испытывает прецессию с периодом 40-50 млн. лет, близким вращению диска [1]. Логарифмические рукава, как и в М 31 (см. рис. 3), начинаются из кольцевой зоны на удалении 4-х кпк от центра, определяющей радиус изотермического ядра системы.
Рис. 8. Спиральная конструкция Галактики. Римские цифры – номера логарифмических рукавов (сплошные линии), арабские цифры – номера струйных потоков (пунктирные линии). Г. ц. – галактический центр. Стрелки указывают направление движения.
В силу современного положения Солнца в Галактике, из двух ее струйных потоков реально наблюдается только один, отождествляемый с ветвью Ориона-Лебедя (рис. 9).
Рис. 9. Местная система звезд Галактики [36] с нанесенными на нее с рис. 8 положениями логарифмических ветвей (сплошные линии) и струйного потока (пунктир). Звездочка в кружке – положение Солнца.
Эту ветвь, на внутренний край которой проецируется Солнце, сегодня ошибочно считают ответвлением рукава Киля-Стрельца [22, 43, 45]. По составу звезд, углу закрученности спирали и наклону к галактической плоскости она заметно отличается [22, 43] от рукавов Киля-Стрельца и Персея.
Солнце не принадлежит струйному потоку Ориона-Лебедя, а движется в Галактике по самостоятельной, медленно эволюционирующей орбите [46].
Одним из центральных вопросов, решавшихся автором при построении данной модели, явился выбор расстояния Солнца от центра Галактики. На протяжении последних 50 лет это расстояние в астрономии неоднократно пересматривалось. Так, если в 1950-ых годах наиболее достоверным считалось значение R0 = 7.2 кпк, то к 1980-ым оно возросло до 10.0±1.0 кпк [22]. Но затем наступил период снижения этой величины, и сегодня оно вернулось к значению 7.1 кпк [45] пятидесятилетней давности.
Полагая на основании работы [26] (см. табл. 1), что степень закрученности архимедовых ветвей у спиральных галактик одинакова, параметр r струйных потоков Галактики был принят таким же, как в М 31. Это приводит к величине R0 = 10 кпк [46].
7. Орбита Солнца в Галактике
Первое исследование движения Солнца в Галактике принадлежит [16]. В результате своих расчетов Паренаго нашел, что орбита Солнца близка круговой, а его сидерический, аномалистический и драконический периоды движения составляют 212, 176 и 85 млн. лет, соответственно. Более поздние исследования [8, 12, 47] привели к иным значениям параметров солнечной орбиты. Расчеты показали, что решение данной задачи сильно зависит от использованной модели гравитационного потенциала Галактики и принятого значения R0 солнечной орбиты.
В отличие от работ других авторов, наши расчеты выполнены для модели Галактики в виде звездной изотермической сферы. Функция распределения гравитационного потенциала задавалась формулой (1), коэффициенты которой определялись при оптимизации вычисленной орбиты Солнца по астрономическим и геологическим данным.
Астрономическим тестом служило соответствие [48] рассчитанных взаимных движений Солнца, звезд струйного потока Ориона-Лебедя и ветвей Персея и Киля-Стрель-ца (см. рис. 9) координатам 1 и 2 вертексов Я. Каптейна [49]. Геологическим тестом, на первом этапе, являлось согласие времен попадания Солнца в струйные потоки Галактики [50, 51] с границами стратонов геохронологических шкал фанерозоя [52] и венда [53], а на втором этапе – совпадение времен попадания Солнца также в спиральные галактические рукава [54] с эпохами массового вымирания на Земле живых существ [55].
Согласно построенной модели, Солнце возникло в одном из четырех рукавов Галактики на удалении ~8 кпк от галактического центра. После конденсации оно обрело почти круговую орбиту, лежащую в галактической плоскости, в которой движется и сегодня. В результате многократных взаимодействий Солнца с другими звездами Галактики его орбита к настоящему времени приобрела и заметный эксцентриситет.
В результате оптимизации найдено [1], что современная солнечная орбита имеет форму эллипса с большой полуосью 10.17 кпк и эксцентриситетом 0.36, медленно поворачивающимся в направлении движения Солнца с угловой скоростью 3.04´10-9 лет-1. Сидерический и аномалистический периоды Солнца составляют 223 млн. лет и 250 млн. лет. Одновременно Солнце совершает небольшие колебания поперек галактической плоскости. Эти колебания характеризуются драконическим периодом ~40-50 млн. лет, близким к периоду вращения ядерного диска, и имеют амплитуду ~50 пк.
В настоящий момент времени Солнце движется со скоростью 253.5 км/с и ускорением +3.2 км/с в млн. лет к перигалактической точке орбиты.
Вследствие эволюции Галактики период движения Солнца и средний радиус его орбиты со временем растут, а его средняя орбитальная скорость падает. Темп этих изменений составлял:
= 3.03´10-7 пк/год и
= -7.47´10-4 см/с в год [1]. Так что в прошлом радиус орбиты и период движения Солнца в Галактике были меньше, чем сегодня.
8. Связь галактического движения Солнца с геологией
В процессе орбитального движения Солнце квазипериодически в течение ~1-4 млн. лет пересекает струйные потоки и спиральные галактические рукава. И всякий раз в такие эпохи Солнечная система подвергается воздействию присутствующих в них объектов, в первую очередь, звезд и комет. Все без исключения такие события отмечены в истории Земли как эпохи глобальных геологических, климатических, биотических и иных катастроф, выступающих естественными границами геохронологической шкалы.
В табл. 2 и на рис.10 расчетные времена попадания Солнечной системы в струйные потоки и спиральные рукава Галактики [54] сопоставлены с эпохами массового вымирания (МВ) на Земле живых существ по данным Дж. Сепкоски [55].
Таблица 2.
Времена эпох вымирания организмов по наблюдениям и данным расчета
№
Стратиграфическое положение эпохи массового вымирания
Уровень вымирания
Геологический возраст границ веков по шкале [56], млн. лет.
Расчетное время, млн. лет
1
Плиоцен
5.3 – 1.8
3
2
Олигоцен – миоцен
23.8
22
3
Ср. эоцен – приабонский век
37.0
43
4
Маастрихт – даний
ВМВ
65.0±0.1
67
5
Сеноман – турон
93.5±0.2
90
6
Баррем – апт
121.0±1.4
116
7
Киммеридж – титон
150.7±3.0
147
8
Плинсбах – тоар
189.6±4.1
183
9
Норий – рэт
ВМВ
209.6±4.1
213
10
Анизин – ладин
234.3±4.6
234
11
Татарский – грисбахский века
ВМВ
248.2±4.8
253
12
Сакмарский-артинский века
269
272
13
Степанская эпоха
303 – 290
293
14
Серпухов – башкир
323
317
15
Турне – визе
(ВМВ)
342
340
16
Фран – фамен
(ВМВ)
364
366
17
Лудловская эпоха
423 – 419
397
18
Ашгилл – лландовер
ВМВ
443
433
19
Лланвирн – лландейло
464
463
20
Тремадок – арениг
485
484
21
Дресбахский век
505 – 495
503
22
Ботомский век
524 – 518
522
23
Томмотский век
534 – 530
543
24
Начало фанерозоя (шкалы до 1993г)
570±15
567
Примечание: через черточку приводятся значения начала и конца одного века или эпохи, если событие массового вымирания (МВ) охватило большую часть или весь этот интервал. ВМВ – великие массовые вымирания. В скобках указаны события, признаваемые «великими» лишь отдельными исследователями. Для данных в последней колонке предполагается, что Солнце входит в струйный поток на 2 млн. раньше и выходит из него на 2 млн. лет позже расчетного значения.
Рис. 10. Сопоставление кривой смертности семейств морских животных в фанерозое по подсчетам Дж. Сепкоски (а) с положением Солнца на орбите и его удалением от центра Галактики и четырех спиральных рукавов (б): I-IY – номера спиральных ветвей Галактики (рис. 8). Ширина галактических ветвей (заштрихованы) условно принята 1 кпк. На кривой, отражающей положение Солнца на орбите, точки с цифрами – моменты попадания Солнца в струйные потоки (табл. 2), квадраты – моменты его одновременного пребывания в струйных потоках и спиральных рукавах.
Таким образом, между эпохами биотических кризисов и бомбардировками галактическими кометами существуют четкая причинно-следственная связь. Времена кометных падений также тесно коррелируют с эпохами повышенной тектонической активности Земли, так называемыми фазами Штилле [57]. Последние, как правило, отстают от эпох вымирания организмов на несколько млн. лет [58].
Смертность организмов и активность тектонических процессов резко возрастают в моменты пребывания Солнца в областях газоконденсации и звездообразования галактических рукавов. В истории Земли почти все они выделены как эпохи «великих массовых вымираний». Геологи с ними связывают границы периодов геохронологической шкалы фанерозоя. Тогда как обычные моменты попадания Солнца в струйные потоки отражены в этой шкале границами ее более мелких подразделений – отделов.
Вследствие неравномерного движения Солнца по орбите, интервал времени между эпохами земных катастроф подвержен модуляции с периодом, равным длительности аномалистического «галактического года» (рис.11). Этот график хорошо объясняет результаты многочисленных эмпирических работ по цикличности биосферных кризисов и эпох образования месторождений отдельных полезных ископаемых [3-5, 59-61].
Рис. 11. Промежутки времени между последовательными попаданиями Солнца в струйные потоки Галактики для последних 700 млн. лет. Цифры – номера стратонов в табл. 2. Внизу показано общепринятое подразделение этого временного интервала на геохронологические периоды и эры: кайнозойскую kz, мезозойскую mz и протерозойскую pz; I-IV – один из возможных вариантов объединения периодов в мегациклы.
Вычисленная орбита Солнца позволяет найти значения коэффициентов в формуле (1) для сферически симметричного гравитационного потенциала Галактики:
, где R0 = 10 кпк. (2)
Первый, зависящий от R член разложения, определяет движение Солнца по эллиптической орбите, а второй – медленный поворот линии апсид эллипса в направлении перемещения Солнца. Членами разложения более высокого порядка можно пренебречь.
Модель изотермической сферы звезд с распределением гравитационного потенциала (2) устраняет проблему «темной материи». Она естественным образом объясняет выполаживание кривой вращения спиральных галактик за пределами их изотермического ядра (см. рис. 4), а также крайне слабое изменение радиальной скорости движения струйных потоков, требуемое архимедовым типом их закрученности (см. рис. 2).
9. Геохронологическая шкала
Основой современной геохронологической шкалы является шкала стратиграфическая. Первая такая шкала, как отражение естественных этапов геологической истории Земли, была утверждена на VIII сессии Международного геологического конгресса в 1900 г. В 1960-е годы границы стратоны этой шкалы получили датировку изотопными методами измерения возраста пород, что дало толчок к разработке достаточно полной и точной шкалы геохронологической [62]. Тогда же стало окончательно ясно, что многие геологические процессы циклически повторяются на Земле с периодами ~106¸109 лет.
Согласно галактоцентрической парадигме вся совокупность таких циклов отражает не только внутреннее эндогенное развитие Земли. Она служит также индикатором ряда мощных космических событий, которые квазипериодически повторяются в Солнечной системе и оказывают сильное влияние на природные процессы нашей планеты.
На протяжении геологической истории Земли механизм этого влияния оставался неизменным и по существу сводился к бомбардировке нашей планеты крупными космическими телами: астероидами и кометами. Поэтому современная геохронологическая шкала, построенная в виде иерархической системы вложенных друг в друга циклов разной длительности, может рассматриваться как эмпирическая информация о повторяющихся космических воздействий близкой природы. Они ранжированы по трем признакам: 1) по величине сообщаемой Земле энергии, 2) по преобладавшему типу падавших тел и 3) по одиночному или массовому характеру их падений [54, 63].
Соответствие рубежей геохронологической шкалы основным космическим событиям отражено в табл. 3. Там же указаны периоды повторяемости этих событий и их энергетическое влияние на Землю [40, 54].
Таблица 3.
Хронологическая шкала космических событий
Космическое событие (физическая причина)
Подразделение шкалы
Время (t) или период (T) повтора событий
Энергетическое воздействие, Дж.
|
Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 |



