«к вопросу о развитии наномаркетинга в россии»
Выполнил: студент 364 группы
Коротунов филипп
научный руководитель; багиев г. л.
Нанотехнологии в России
В России работы по разработке нанотехнологий начаты еще 50 лет назад, но слабо финансируются и ведутся только в рамках отраслевых программ. К настоящему времени назрела необходимость формирования программы общефедерального масштаба с учетом признания важной роли нанотехнологий на самом высоком государственном уровне.
Широкомасштабное и скоординированное развертывание на базе существующего задела работ в области нанотехнологий позволит России восстановить и поддерживать паритет с ведущими государствами в науке и технике, ресурсо - и энергосбережении, в создании экологически адаптированных производств, в здравоохранении и производстве продуктов питания, уровне жизни населения, а также обеспечит необходимый уровень обороноспособности и безопасности государства.
Нанотехнологии могут стать мощным инструментом интеграции технологического комплекса России в международный рынок высоких технологий, надежного обеспечения конкурентоспособности российской продукции.
Разработка и успешное освоение новых технологических возможностей потребует координации деятельности на государственном уровне всех участников нанотехнологических проектов, их всестороннего обеспечения (правового, ресурсного, финансово-экономического, кадрового), активной государственной поддержки отечественной продукции на внутреннем и внешнем рынках.
Основные цели применения нанотехнологий
Разработка и применение нанотехнологий, и связанных с ними направлений науки, техники и производства позволят достичь следующих основных целей:
в сфере политики:
- укрепление позиций России в группе государств-лидеров мирового развития; повышение рейтинга России в международном разделении труда;
в сфере экономики:
- изменение структуры валового внутреннего продукта в сторону увеличения доли наукоемкой продукции; повышение эффективности производства; переориентация российского экспорта с сырьевых ресурсов на конечную высокотехнологичную продукцию и услуги путем внедрения наноматериалов и нанотехнологий в технологические процессы российских предприятий;
в сфере национальной безопасности:
- обеспечение экономической и технологической безопасности на базе широкого внедрения нанотехнологий в модернизацию используемого и создание нового, более эффективного оборудования; повышение степени безопасности государства путем широкого внедрения наносенсорики для эффективного контроля присутствия следов взрывчатых веществ, наркотиков, отравляющих веществ в условиях угроз террористических актов, техногенных катастроф и других факторов внешнего воздействия; совершенствование имеющегося вооружения и создание новое военной и специальной техники;
- повышение качественных показателей жизни и экологической безопасности населения путем внедрения в практическое здравоохранение систем диагностики, базирующихся на нанотехнологиях и предназначенных для раннего обнаружения тяжелых и хронических заболеваний (ранняя диагностика рака, гепатита, сердечно-сосудистых заболеваний, аллергии), профилактики и лечения, а также развитие производства новых препаративных форм лекарств и витаминов; создание новых рабочих мест для высококвалифицированного персонала инновационных предприятии, создающих продукцию с использованием нанотехнологий;
в сфере образования и науки:
- развитие фундаментальных представлений о новых явлениях, структуре и свойствах наноматериалов; формирование научного сообщества, подготовка и переподготовка кадров, нацеленных на решение научных, технологических и производственных проблем нанотехнологий, создание наноматериалов и наносистемной техники, с достижением на этой основе мирового уровня в фундаментальной и прикладной науках; распространение знаний в области нанотехнологий, наноматериалов и наносистемной техники.
Эффективное достижение намеченных целей потребует системного подхода к решению целого ряда взаимосвязанных задач, основными из которых являются:
- координация работ в области создания и применения нанотехнологий, наноматериалов и наносистемной техники; создание научно-технической и организационно-финансовой базы, позволяющей сохранить и развивать имеющийся в России приоритетный задел в исследованиях и применении нанотехнологий; развитие бюджетных и внебюджетных фондов, поощряющих и развивающих исследования в области наноматериалов и нанотехнологий и стимулирующих вклады инвесторов; формирование инфраструктуры для организации эффективных фундаментальных исследований, поиска возможных применений их результатов, развития новых нанотехнологий и их быстрой коммерциализации; поддержка межотраслевого сотрудничества в области создания наноматериалов и развития нанотехнологий; обеспечение заинтересованности в решении научных, технологических и производственных проблем развития нанотехнологий и наноматериалов путем либерализации налоговой политики, оптимизации финансовой политики; создание системы защиты интеллектуальной собственности; разработка и внедрение новых подходов к обучению специалистов в области нанотехнологий.
Ключевые проблемы развития нанотехнологий в России
Анализ мирового опыта формирования национальных и региональных программ по новым научно-техническим направлениям свидетельствует о необходимости выявления некоторых ключевых проблем в области разработки наноматериалов и нанотехнологий.
Первая проблема - формирование круга наиболее перспективных потребителей, которые могут обеспечить максимальную эффективность применения современных достижений. Необходимо выявить, а затем и сформировать потребности общества в развитии нанотехнологий и наноматериалов, способных существенно повлиять на экономику, технику, производство, здравоохранение, экологию, образование, оборону и безопасность государства.
Вторая проблема - повышение эффективности применения наноматериалов и нанотехнологий. На начальном этапе стоимость наноматериалов будет выше, чем обычных материалов, но более высокая эффективность их применения будет давать прибыль. Поэтому необходимо среднесрочное и долгосрочное финансирование НИОКР по наноматериалам и нанотехнологиям с выбором способов реализации программы, включая масштабы и источники финансирования. Государство заинтересовано в быстрейшем развитии перспективного направления, поэтому оно должно взять на себя основные расходы на проведение фундаментальных и прикладных исследований, формирование инноваций.
Третья проблема - собственно разработка новых промышленных технологий получения наноматериалов, которые позволят России сохранить некоторые приоритеты в науке и производстве.
Четвертая проблема - обеспечение перехода от микротехнологий к нанотехнологиям и доведение разработок нанотехнологий до промышленного производства, особенно в области электроники и информатики.
Пятая проблема - широкомасштабное развитие фундаментальных исследований во всех областях науки и техники, связанных с развитием нанотехнологий.
Шестая проблема - создание исследовательской инфраструктуры, включая:
- организацию центров коллективного пользования уникальным технологическим и диагностическим оборудованием; современное приборное оснащение научных и производственных организаций инструментами и приборами для проведения работ в области нанотехнологий; обеспечение доступа научно-технического персонала к синхротронным и нейтронным источникам (как российским, так и зарубежным), к сверхпроизводительным вычислительным комплексам; разработку специальной метрологии и государственных стандартов в области нанотехнологий; развитие физических и аппаратурно-методических основ адекватной диагностики наноматериалов на базе электронной микроскопии высокого разрешения, сканирующей электронной и туннельной микроскопии, поверхностно-чувствительных рентгеновских методик с использованием синхротронного излучения, электронной микроскопии для химического анализа, электронной спектроскопии, фотоэлектронной спектроскопии.
Седьмая проблема - создание финансово-экономического механизма формирования оборотных средств у институтов и предприятий-разработчиков наноматериалов и нанотехнологий, а также развитие инфраструктуры, обеспечивающей поддержку инновационной деятельности в этой сфере на всех ее стадиях от выполнения научно-технических разработок до реализации высокотехнологической продукции.
Восьмая проблема - привлечение, подготовка и закрепление квалифицированных научных, инженерных и рабочих кадров для обновленного технологического комплекса Российской Федерации.
Для выработки и практической реализации необходимых и достаточных мер в области создания и развития нанотехнологий должна быть сформирована государственная политика, которая, в свою очередь, должна рассматриваться как часть государственной научно-технической политики, определяющей цели, задачи, направления, механизмы и формы деятельности органов государственной власти Российской Федерации по поддержке научно-технических разработок и использованию их результатов.
К таким мерам прежде всего необходимо отнести:
- разработку и реализацию материально-технического обеспечения работ в области нанотехнологий с максимальным учетом возможностей кооперации в использовании уникального сверхдорогостоящего научного и экспериментально-исследовательского оборудования; подготовку, повышение квалификации, привлечение и закрепление кадров (прежде всего молодых специалистов) в области нанотехнологий для их использования в научной и промышленной сферах; изучение рынка наукоемкой продукции в части нанотехнологий с использованием методов прогнозирования и технико-экономической оценки; анализ современного состояния научно-исследовательских работ фундаментального и прикладного профиля в соответствии с общими отечественными и мировыми тенденциями в развитии данного направления, а также результативности законченных исследовании и их дальнейшей перспективности; определение приоритетных ориентированных направлений в области нанотехнологий, результаты которых могут быть использованы в ближайшее время, среднесрочной и дальней перспективе, а также в фундаментальных и поисковых исследованиях; разработку и использование системы координации и кооперации проводимых исследований в области нанотехнологий; создание и использование экспертных систем и баз данных как информационного возобновляемого ресурса в области последних достижений, связанных с разработкой и применением нанотехнологий в стране и за рубежом; отработку систем взаимодействия государства с предпринимательским сектором экономики в целях формирования рынка нанотехнологий, привлечения внебюджетных средств для проведения исследований и организации соответствующих производств; разработку мер по активизации участия бюджетных и внебюджетных фондов и частных инвесторов на всех стадиях разработки и освоения нанотехнологий; разработку системы мер по организации эффективного взаимовыгодного международного сотрудничества в области исследований и практического использования нанотехнологий.[1]
Решения участников „круглого стола“ по проблемам государственной политики в развитии нанотехнологий в России
Участники встречи, среди которых помимо парламентариев и государственных чиновников присутствовали выдающиеся ученые, отметили, что в современных условиях государство должно всемерно способствовать приоритетному развитию научных исследований в области нанотехнологий и их активному внедрению в производство.
„Дальнейшее промедление продолжит инерционное сползание России на обочину научно-технического прогресса“, – говорится в рекомендациях участников встречи. По итогам обсуждения участники „круглого стола“ рекомендовали Федеральному Собранию России предусмотреть во втором полугодии текущего года выделение из стабилизационного фонда России финансовых ресурсов в размере 70 млн. $ США. Кроме того, начиная с 2006 года, рекомендуется при принятии законов о федеральном бюджете на очередной год предусматривать целевое финансирование на развитие индустрии нанотехнологий в размере 500 млн. $ США.
Помимо этого, парламентариям предлагается внести изменения в Налоговый кодекс, которые, в частности, освободили бы научные организации, технопарки и наукограды, занятые в индустрии нанотехнологий от налога на имущество и земельного налога без ограничения срока действия этой льготы.
Кроме того, вновь создаваемые научные организации, работающие в этой сфере, предлагается освободить от всех видов налогообложения сроком на пять лет.
Правительству России участники встречи рекомендовали до 1 июля текущего года разработать и принять федеральную целевую программу, обеспечивающую приоритетное развитие нанотехнологий в стране, начиная с 2006 года.
Участники встречи отметили, что в ХХ1 веке нанотехнологии, позволяющие видоизменять вещество на уровне молекул и атомов, станут одними из наиболее перспективных технологий при производстве материальных ценностей и окажут решающее влияние на развитие науки, техники и экономики страны.
„Ожидаемое к 2015 году широкое промышленное применение нанотехнологий будет иметь серьезные экономические и социальные последствия для всего человечества“.[2]
OLED дисплей
TOP 10 нанопродуктов 2004
Прогнозы развития объема нанорынка к 2015 году довольно оптимистичны: 1 миллиард долларов. Нанотехнологии развиваются на сегодняшний день по экспоненциальной зависимости, поэтому объем рынка тоже может вырасти так же быстро. Компания представила список 10 лучших на сегодня продуктов, созданных с помощью нанотехнологий. Критерии отбора продуктов был прост:
1 - популярность на рынке;
2 - использование нанотехнологий;
3 - применение продукта в повседневной жизни.
Вот список 10 наиболее эффективных и продаваемых на сегодня нанопродуктов:
1) Органические светоизлучающие диодные дисплеи (Organic Light Emitting Diode OLED Displays)
Ультратонкие дисплеи, которые собраны из нескольких слоев нанопленок. Нанопленки содержат матрицы электродов и, расположенного между ними, светоизлучающего органического полимера. Изображения на дисплее моно рассматривать под разными углами без потери качества. Они тоньше и легче современных LCD дисплеев, поэтому практически идеально подходят к применению в мобильных телефонах, карманных компьютерах, цифровых камерах и фотоаппаратах.
2) Наноэмульсии и антибактериальные нанопокрытия
Наноэмульсии и антибактериальные покрытия используют для уничтожения патогенных бактерий (таких, например, как туберкулезная палочка). Новые антибактериальные поверхности также не горючи, не вызывают коррозии и не представляют вреда для человека и окружающей среды.
3) Нанокапсулы
Это "контейнеры для лекарств", которые созданы искусственно. Нанокапсулы бывают размерами от 100 до 600 нанометров. Обычно, их оболочка изготовлена из полимеров. Также некоторые капсулы представляют собой липосомы. Они защищают лекарство от нежелательного растворения в жидких средах. Таким образом лекарство, заключенное в нанокапсулы лучше усваивается. В производстве некоторых нанокапсул использовали биомиметику для того, чтобы эффективней доставлять лекарства к определенным типам клеток. Сегодня нанокапсулы широко используются в косметике, для того, чтобы доставить заключенные в них витамины к подкожным слоям. Не секрет, что косметическая индустрия является очень важной частью промышленности в целом. Необходимо сделать возможным доставку разных активных компонентов к более глубоким слоям кожи. L’Oreal – самая большая косметическая компания в мире – наряду с такими марками, как Lancome, Helena Rubenstein и Armani ввели в 1998 году в производство первый нанотехнологический продукт - Plenitude Revitalift, крем от морщин. В этом креме используются специальные полимерные нанокапсулы размерами 200 нанометров, доставляющие коже витамин А. Капсула действует подобно губке, она хранит полезные вещества до тех пор, пока ее оболочка не растворится в вашей коже. Компания L’Oreal опросила женщин, которые пользовались кремом Revitalift, и те показали, что морщин стало меньше на 80%, а состояние кожи улучшилось на 75%.
4) Наножидкостные системы
Давно известные на научной арене микрожидкостные системы получили новое воплощение с помощью нанотехнологий. Наножидкостные системы с каналами диаметром в несколько десятков и сотен нанометров смогут работают в составе лабораторий-на-чипе, которые проводят экспресс-анализы ДНК, белков, и других биомолекул. Некоторые биореакторы, например, смогут использоваться в лечении диабета.
5) Наноэлектронные устройства с тактовой частотой 1ГГц
Медицинские нанороботы все еще остаются фантастикой. Зато в 2004 году был сделан ряд важных исследований, по результатам которых становится возможным создать рабочие наномеханические и наноэлектронные системы с тактовой частотой около 1 ГГц. Это разнообразные осцилляторы; модули механопамяти нанометровых размеров; датчики на основе нанотрубок; и т. п. В основном эти устройства изготовлены на кремниевых подложках методами электронно-лучевой литографии.
6) Нанокатализаторы для автотранспорта
Различные нанокатализаторы уже применяются при обработке сырой нефти. Нанокатализаторы могут повысить КПД моторов внутреннего сгорания и, при этом, уменьшить выброс вредных веществ. Также на рынке широко распространены нано-фильтры для очистки как воздуха в салоне (Panasonic), так и топлива. Отдельно хотим отметить один из российских нанопродуктов – уникальный ремонтно-восстанавливающий состав, позволяющий создавать модифицированный высокоуглеродистый железосиликатный защитный слой (МВЗС) толщиной 0,1-1,5 мм в областях интенсивного трения металлических поверхностей. Это снижает износ автомобильного двигателя и повышает его срок службы.
7) Устройства на основе нанотрубок
Нанотрубки уже зарекомендовали себя как универсальный стройматериал наноэлектроники. С их применением получаются и осцилляторы, и диоды, и транзисторы, и наножидкостные устройства. Нанотрубками сегодня даже убивают бактерий. Со временем, когда технология их производства и применения будет отточена, они займут 1 место по продажам на нанорынке. Примеры их современных применений велики - от дисплеев на нанотрубках, до велосипедов, в которых нанотрубки обеспечивают жесткость материала.
8) Нанокристаллы
Нанокристаллы получают методами испарения и конденсации металлов. Полученные нанокристаллы размерами в несколько нанометров в диаметре обладают уникальными характеристиками. Некоторые нанокристаллы жестче, чем их макроскопические аналоги в 3 раза! Некоторые нанокристаллы являются квантовыми точками, а с помощью массивов квантовых точек размером 7 нм возможно достижение плотности записи информации до 10 трлн. бит на квадратный дюйм. При такой плотности записи информации, носитель размером с небольшую монету сможет предоставить емкость до 5 Тб, которой достаточно для размещения крупной библиотеки. Также при изготовлении массивов наноточек используется эффект самопроизвольного создания атомарных кластеров, что позволило добиться почти одинаковых их размеров. О применениях квантовых точек мы уже говорили много - это и будущая программируемая материя, и уже реально работающие очки ночного видения.
9) НЭМС
В отличие от МЭМС (микроэлектромеханических систем), которые появились в 1980'х, наноэлектромеханические системы (НЭМС) находятся на ранних стадиях развития. Но наноэлектромеханические системы развиваются столь быстро благодаря новым научным открытиям и появлению их технических применений. Механические устройства уменьшаются в размерах, при этом снижается их масса; увеличивается резонансная частота и уменьшается их константы взаимодействия. Нововведения в этой области включают в себя улучшения в процессе изготовления и новые методы для детектирования движения и привода наносистем. Используя методы литографии, стало возможным создание автономных объектов в кремнии и других материалах с толщиной и длиной менее 20 нанометров (нм). Похожими методами можно изготовить каналы или поры молекулярных размеров. Что позволит получить доступ в новый экспериментальный режим и ожидать новых применений таких устройств для считывания (сканирования) и молекулярного взаимодействия. Используя НЭМС-технологию, мы можем ожидать появления высоко функциональных сенсоров, атравматичных медицинских диагностических устройств и сверх емких устройств для хранения информации.
10) Бытовые продукты, улучшенные с помощью нанотехнологий
Бытовые применения нанотехнологий начались с продуктов Cerax Nanowax и текстиля Nano Tex. Nanowax является первым в мире продуктом, использующим химическую нанотехнологию, создающую «умную» поверхность покрытия с многофункциональными свойствами. Воск способствует хорошему скольжению поверхности лыжи. Это ультратонкое покрытие, которое работает намного дольше, чем традиционные средства, которые, как правило, очень быстро исчезают. «Умный» Nanowax застывает при низкой температуре, сливается с поверхностью лыжи и скользит по кристалликам снега. Nanowax имеет разнообразные типы для различных видов зимнего спорта, для разных погодных условий, а также для различного уровня профессиональной подготовки спортсмена.
Появились некоторые солнцезащитные стекла марки Smith, использующие технологические разработки Американской компании Nanofilm, разработанной Сase Western Reserve University. Nanofilm, используя методы нанотехнологии, наносит очень тонкие слои полимера, что дает стеклам покрытие, препятствующее отражению света, и защищает глаза от ультрафиолетового излучения. Nanofilm использует покрытие толщиной в 150 нанометров (20 микрон). Для его нанесения используется химическая самосборка, чтобы придать покрытию правильную молекулярную структуру – слой полимера от трех до десяти нанометров толщиной, на внешней стороне линзы. Это не только предотвращает попадание грязи и кожного жира на стекло, но и делает линзы более удобными для глаз.
Больше люди не будут страдать от грибка! Обычная нога имеет 250000 потовых желез и может производить 500 мл пота в день. Грибок живет и размножается между пальцами ног и в складках кожи. Теперь обычные хлопковые носки обзавелись серебряными наночастицами – их продает компания SoleFresh ™. Нано-серебро предотвращает размножение бактерий и грибка и не придется больше страдать от неприятного запаха.
Конечно, со временем бытовой нанотех станет отдельным TOP 10 и по объемам капиталовложений превысит нанотех исследовательский. Но, как ни крути, бытовых применений нанотехнологий гораздо меньше, чем остальных.
2004, Nanotechnology News Network
TOP-5 самых популярных заблуждений, связанных с нанотехнологиями
Как известно, человеку свойственно ошибаться. Ошибаются даже специалисты и ученые, нередко что-либо преувеличивая или ошибочно принимая на веру, не проверяя кажущиеся на первый взгляд правдоподобными факты или умозаключения.
Поэтому нет ничего удивительного в том, что в такой сложной и быстро развивающейся области технологии и науки как нанотехнология появился ряд заблуждений, которые превратно или зачастую совсем неправильно "объясняют" будущее наноэры.
Цель данной статьи - пролить свет на самые грубые научные ошибки, которые привели к появлению нанозаблуждений и возникновению мифов. Один из таких мифов - угроза "серой слизи". Что самое интересное, в эти мифы охотно верит мировая общественность. Конечно, рой нанороботов, вышедших из-под контроля, живописно описанный в книге "Жертва" Майкла Крайтона, выглядит страшно, несмотря на то, что автор допустил немало именно научных ошибок.
Именно эта книга испугала Принца Чарльза, который теперь является одним из противников развития нанотехнологий в мире. Конечно, любая быстроразвивающаяся технология пугает. Тем более технология с таким большим потенциалом. Можно с уверенностью говорить, что нанотехнологии так же изменят мир, как в свое время его изменила электрификация. В то далекое время, когда электричество было предметом лабораторных исследований, только отдельные фантасты (Жюль Верн, например) смогли более-менее точно описать появление электрических машин, кораблей и подводных лодок. Но смогли ли они предсказать появление вычислительной техники, Интернет и виртуальную реальность?
То же самое происходит в области футурологических прогнозов о будущем человечества, пользующегося благами нанотехнологий. Выгоды, видимые невооруженным глазом, фантасты предсказали еще в 60-х годах прошлого столетия. А дальнейшее прикладное развитие молекулярного производства порождает те самые мифы и заблуждения, о которых мы будем говорить ниже. Особенно это касается области наноробототехники и наномедицины.
Прежде чем начать, следует оговориться, что все заблуждения, которых мы коснемся, в принципе воплотимы и не противоречат физике, химии, инженерии и другим точным наукам. Другое дело, что они неэффективны, нецелесообразны и временные рамки по их реализации могут отличаться от тех, о которых мы привыкли слышать.
Итак, начнем:
1. Вещи в наноэру будут производиться миллионами нанороботов-ассемблеров, они станут собирать их из подручного материала, который перед этим будет разбираться на атомы роботами-дизассемблерами.
Если бы инженеру, жившему в 50-е годы прошлого века, сказали бы что-то вроде: "В недалеком будущем, лет эдак через 40, автомобили будут собирать роботы-андроиды", он наверняка в это бы не поверил, так как уже в то время существовала более дешевая конвейерная сборка. Подобная ситуация имеет место и сегодня. Многие люди, имеющие поверхностное представление о современных производственных процессах, могут поверить в то, что ботинки или плазменные панели в наноэру будут производиться "тучей" нанороботов, собирающих их поатомно. И не задумается о том, насколько неэффективным будет использование таких сложных устройств.
Действительно, для того, чтобы сделать управляемый конгломерат из мобильных нанороботов, необходимо оснастить их рядом сенсоров, системой навигации, системой передвижения и мощным бортовым компьютером для управления всем этим.
Скорее всего, если эта система будет представлять собой "конструктивный туман", о котором мы писали ранее, сборка макроскопического продукта усложнится из-за трудности доставки молекулярного сырья в зону сборки. Гораздо проще было бы из нескольких микроблоков, собранных в одном месте конвейера, формировать макроблоки. Этот подход реализован в проекте нанофабрики Криса Феникса.
Не исключено, конечно, что сборка вещей с помощью мобильных нанороботов будет возможна в будущем. Однако можно с уверенностью сказать, что первые производственные структуры, изготавливающие вещи с атомарной точностью, будут выполнены по принципу нанофабрик, так как для первого производства "роя нанороботов" нужна более простая структура.
Сторрс Холл, автор проекта "конструктивного тумана", сначала представлял себе производственный процесс на основе наноассемблеров, связанных с помощью пространственной сетки, облегчающей их координацию в пространстве и сборку готового продукта. После детальных расчетов даже такая система, состоящая из "привязанных к рельсам" нанороботов, оказалась неэффективной по сравнению с конвейерной нанофабрикой.
Некоторые читатели могут подумать: раз возникают такие трудности при использовании мобильных нанороботов, то, может, и сама концепция "конструктивного роя" тоже неосуществима? В этом случае необходимо заметить, что у гипотетических роботов-сборщиков и "конструктивного роя" различные функции: первые собирают готовый продукт с атомарной точностью, в то время как "рой" формирует готовые объекты из своих составляющих - фоглетов.
Подручный материал, скорее всего, тоже разбираться мобильными нанороботами-дизассемблерами не будет. Это опять-таки неэффективно. Гораздо проще получить сверхчистые материалы в больших количествах методами промышленной химии. На сегодняшний день, правда, этого достичь трудно, но с появлением новых нанокатализаторов получение "молекулярного сырья" будет поставлено на поток.
Также при разбирании сырья на молекулы с помощью дизассемблеров возникает проблема идентификации отдельных "разобранных" атомов и молекул. Некоторые ученые предлагают определять тип атома, воздействуя на него слабым электромагнитным излучением. Другие - взвешиванием с помощью НЭМС-осцилляторов. Но в любом случае процесс "разборки" того же каменного угля на "чистый" углерод с помощью даже миллиона дизассемблеров потребует довольно много времени. Опять-таки, это неэффективно.
2. В эру нанотехнологий все товары будут очень дешевыми и они будут доступны всем желающим.
Любое высокотехнологичное производство никогда не было дешевым. Стоимость готового продукта (при самом грубом приближении) определяется суммированием затрат на производственное оборудование, затрат на сырье для производства и потребленную энергию, затрат на оплату труда обслуживающему персоналу и оплату интеллектуальной собственности (патентов и пр.). Также следует не забывать о том, что в готовом продукте немалую часть составляет прибыль предприятия-изготовителя.
Приведу аналог "бесплатных продуктов" на примере программного обеспечения. Казалось бы, зачем платить большие деньги за то, что можно за несколько секунд растиражировать практически без затрат? Тем не менее, специализированные лицензионные программы стоят очень дорого, программы общего пользования - дешевле, некоторые распространяются бесплатно. Как ни парадоксально, но Билл Гейтс, глава компании Microsoft, самый богатый человек в мире, заработал миллиарды долларов именно на тиражируемом программном обеспечении. Конечно, есть и бесплатно распространяющиеся программы, и они иногда работают лучше дорогих аналогов, но все-таки платные тоже покупают и пользуются ими. Можно предположить, что в будущем будет широко распространено хакерское "нанопиратство", позволяющее бесплатно пользоваться различными продуктами нанотеха, как сегодня это происходит со многим программным обеспечением. Но это не значит, что абсолютно все нанопродукты будут доступны всем. Тем более что кроме интеллектуальных вложений для них потребуются еще сырье и энергозатраты, которые тоже не будут бесплатными.
Попробуем представить себе изготовление нанопродуктов с помощью самого сложного производственного наноустройства - нанофабрики. Например, один предприниматель решил делать и продавать фоглеты для системы "конструктивный туман". Он посчитал, сколько может произвести фоглетов в час одна нанофабрика, и решил, что для массового производства фоглетов ему нужно N нанофабрик. Он приобретает за некоторую начальную сумму нанофабрику у гипотетического распространителя нанофабрик. И затем запускает программу ее самокопирования. Казалось бы - получается все очень дешево. Однако тут есть одно «но». Готовая нанофабрика ну никак не может быть дешевле молекулярного сырья, затраченного на ее производство. И это нормально, так как для производства копии нанофабрики нужно молекулярное сырье. Далее, в процессе работы одна нанофабрика будет потреблять около 250 киловатт электроэнергии в час. Пусть самая "скоростная" нанофабрика в час сделает одну свою копию (хотя это очень и очень быстро). То есть если сначала будет работать одна нанофабрика, а потом две, то потребление электроэнергии возрастет во столько раз, сколько будет работать нанофабрик.
Получив завод из N нанофабрик, коммерсант уже потратит на их создание некоторую сумму, которая будет равна: начальные затраты = (N-1)*(тариф эл. эн, кВт * 250*1 час + стоимость сырья, затраченного на 1 нанофабрику) + стоимость первой нанофабрики. И это затраты только на производственное оборудование. Потом коммерсант наймет исследовательскую группу, которая разработает конструкцию фоглета и наладит их производство. Это обойдется ему еще в определенную сумму. Затем, наконец, он приступает к выпуску серийной продукции. Пусть он в первой партии выпустит M фоглетов. Тогда их стоимость будет равна:
Цена 1 фоглета = (Начальные затраты + затраты на проектирование фоглетов)/M + (250*время производство M фоглетов*тариф эл. эн, кВт + сумма на затраченное сырье для них же)/M
Кроме этого прибавим к этой сумме прибыль коммерсанта - и мы получим уже готовую стоимость одного фоглета. Сейчас трудно реально оценить финансовые параметры этой системы, чтобы прикинуть, сколько же будет стоить "собственный рой". Но уж во всяком случае это будет не бесплатно.
Реальная выгода такого производства по сравнению с обычным - быстрота его развертывания, высокая гибкость и перепрофилируемость. Если тот же коммерсант захочет, например, вместо "роя" производить компьютеры, то он заплатит только конструкторскому персоналу за разработку нового продукта. При этом не нужно будет ничего менять в структуре производства. Это значит, что один такой завод может делать и лекарства, и компьютеры, и продукты питания.
Не исключено, то из-за такой гибкой и доступной технологии производства вещи станут дешевле. Но стоимость их будет зависеть и от вложенной в их разработку интеллектуальной собственности. Поэтому еще рано делать выводы о дешевизне будущего нанопроизводства, пока хотя бы один прототип такого производства не начал работать.
3. А когда в центральном компьютере, управляющем роем наноассемблеров, произойдет сбой, то они дружно примутся разбирать все вокруг себя, складывая из полученных атомов таких же роботов.
Этот вопрос уже не раз обсуждался. Для такого произвола нужна система «ассемблер-дизассемблер». А если ее не будут применять, то, естественно, этого не случится. Нанофабрики же работают по разделенной схеме: они не поставляют сами себе сырья, оно готовится в другом производственном цикле. Этим разъединением сырья и производства удастся предотвратить выход репликаторов типа нанофабрики из-под контроля.
Роберт Фрайтас в самом начале "серого бума" подсчитал, за какое время наниты-репликаторы смогут разобрать всю биосферу Земли на атомы. Получилось, что им потребуется для этого два года.
Естественно, неконтролируемая репликация может быть создана искусственно. Но сделать такое оружие массового поражения будет очень трудно. Тем более что контролировать разбушевавшихся нанитов не смогут сами создатели наноапокалипсиса.
4. Можно будет воскрешать мертвых благодаря медицинским нанороботам, которые будут восстанавливать тела умерших поатомно. И если затем что-то в твоем теле необходимо будет изменить, то полчища нанороботов перестроят его за доли секунды: вырастят дополнительные ноги/руки, изменят форму и прочность тела и переведут метаболизм с кислорода на метан.
Как ни прискорбно, но воскрешать мертвых даже наномедицина, скорее всего, не сможет. В течение клинической смерти еще есть шансы поддержать жизнь в пациенте, пока жив головной мозг. При смерти человека происходит потеря структуры самого главного органа - головного мозга. Даже если периодически записывать поатомную структуру головного мозга пациента, а потом восстанавливать его с последнего "чек-поинта", то это будет не тот человек, который умер.
Он не будет помнить отрезок времени, прошедший с момента "чек-поинта" и до смерти. Конечно, можно будет сделать сложные системы мониторинга состояния головного мозга для того, чтобы как можно чаще "сохранять" его структуру. Но гораздо проще разработать меры по предотвращению преждевременной смерти и смерти от несчастных случаев.
Можно реконструировать тело человека, снабдив его набором имплантов и наноробототехники, что позволит радикально продлить срок человеческой жизни и защитить людей от 99% существующих заболеваний. Но защититься настолько же эффективно от несчастных случаев не удастся. В целом человечество станет здоровее, моложе и сможет жить практически неопределенное количество лет. Но опасность от случайной смерти останется.
Воскрешать же мертвецов, пролежавших дни, годы или столетия в могилах - утопия. Этого не достичь даже с помощью самых развитых нанотехнологий. Как было сказано выше - без информации о строении головного мозга умершего нельзя достичь его возвращения к жизни.
Быстрые преобразования в организме возможны лишь в определенных пределах, поэтому не стоит ждать от нанотехнологий чудес. Конечно, с помощью наномедицины можно приспособить организм человека к работе в более широком температурном диапазоне и т. д., но эти изменения не смогут произойти за доли секунды. Например, для достижения эффекта длительного дыхания с помощью респироцитов, описанных Робертом Фрайтасом, необходимо ввести в кровеносную систему набор этих наноустройств и затем провести несколько раз гипервентиляцию легких (глубоко вдохнуть 10-12 раз). Только после этих манипуляций человек сможет находиться без кислорода в течение часа.
5. И все эти чудеса нанотеха произойдут уже через 10-20 лет!
Создание первых примитивных наномашин (нанокомпьютеров, наноманипуляторов и наномеханизмов) потребует инструментария, которого еще не существует. С помощью современной атомно-силовой и сканирующей зондовой микроскопии сделать даже простейший наноподшипник практически невозможно, так как это трехмерная наноструктура. На сегодняшний день исследователям удалось создавать атом за атомом лишь плоские структуры, состоящие из десятка атомов. Поатомная сборка современными микроскопами нанокомпьютера, например, сравнима со строительством египетских пирамид с помощью пинцета. Поэтому с помощью современной технической и инструментальной базы сделать наносистемы с атомарной точностью нельзя.
Но если бы можно было сделать такие наносистемы, как наноманипулятор, сейчас, то, без всякого сомнения, нанороботы появились бы в нашей жизни лет через десять.
Скорее всего, первые инструменты, с помощью которых можно будет собирать из атомов различные трехмерные структуры, появятся только к концу этого десятилетия. Также, вероятно, разовьются биотехнологические методы производства отдельных упорядоченных молекул и заранее спроектированных белков. Белки-энзимы в природе выполняют функции природных наномашин, и если человеку удастся повторить эти биологические механизмы, то появится возможность производить и синтезировать простейшие наноструктуры, из которых впоследствии можно будет собрать наноманипуляторы и нанокомпьютеры, эти базовые блоки наномашин и нанороботов.
Большие надежды возлагаются на производство методом самосборки. Не исключено, что многие алмазоидные и биологические наномашины можно будет производить методами самосборки с помощью энзимов или катализаторов. Но, опять-таки, исследования в этих областях только начинаются, хотя перспективы их применения уже довольно широкие.
Исходя из того, что инструментов для производства наномашин пока нет, а ближайшие появятся лет через 10-20, то не стоит ждать реально работоспособных нанороботов и прочих чудес нанотеха раньше, чем через 40-50 лет. И это оптимистический прогноз. По пессимистическому прогнозу расцвет нанотеха произойдет к концу этого столетия.
2005, Nanotechnology News Network
[1] http://www. /index. php? module=pagesetter&func=viewpub&tid=6&pid=43
[2] http://www. /lenta5/135452.html? print=yes



