Однако, даже если основываться только на результатах исследования УО, полученных с помощью нетравматических методов, следует признать, что у спортсменов так же, как и у лиц, не занимающихся спортом, диапазон индивидуальных колебаний весьма велик. Так, по данным и (1982), основным при определении УО методом возвратного дыхания СО2 у 315 спортсменов различного возраста, спортивного мастерства и направленности тренировочного процесса диапазон индивидуальных колебаний величин УО составил от 38 до 130 мл при среднем значении 79,6 + 12,7 мл.
Важно подчеркнуть, что попытки нивелировать различия величин УО, вызванные различиями ростомассовых характеристик обследуемых, путем приведения значений УО к единице поверхности тела - ударный индекс (УИ), не приводят к существенному уменьшению разброса индивидуальных значений ( и др., 1981).
Таким образом, приведенные литературные данные позволяют сделать два важных вывода. Во-первых, средние значения УО у спортсменов в покое, рассчитанные без учета уровня спортивного мастерства, стажа и направленности тренировочного процесса, либо несколько ниже, либо не отличаются от таковых у лиц, не занимающихся спортом.
Во-вторых, величины УО имеют широкий диапазон индивидуальных колебаний. Это требует поиска новых подходов к оценке показателей центральной гемодинамики у здоровых лиц, в том числе и у спортсменов.
Тип кровообращения
Принято различать 3 типа кровообращения (ТК) - гипо-, эу - и гиперкинетический (, 1974). В основу деления положен расчет сердечного индекса (СИ). Гипокинетический тип кровообращения (ГТК) характеризуется низким СИ и относительно высокими величинами ОПСС и УПСС.
При гиперкинетическом типе кровообращения (ГрТК) определяются самые высокие значения СИ и УИ, МОК и УО и соответственно низкие ОПСС и УПСС. И наконец, при эукинетическом типе (ЭТК) значения всех этих показателей гемодинамики находятся в середине диапазона колебаний.
полагал, что ТК формируются самими заболеваниями и возникают вследствие различного патогенетического воздействия стрессов на гемодинамику, однородную у всех здоровых людей. С этих позиций, а именно однородности гемодинамической нормы здоровых людей и различного влияния патогенетических механизмов заболевания, и сегодня рассматривается целый ряд болезней сердечно-сосудистой системы (артериальные гипер - и гипотензии и т. п.).
Вместе с тем еще исследования сотрудников клиники в 1930-х годах, проведенные для изучения аппарата кровообращения у здоровых лиц, давали основание предполагать существование гемодинамической неоднородности здоровых людей. Именно последнее обстоятельство, а не только влияние патологических воздействий, определяет гемодинамическую неоднородность больных.
и соавт. (1981), используя аналогичный подход к оценке гемодинамической нормы, подтвердили, что значительный разброс показателей гемодинамики (в 3-4 раза) действительно объясняется гемодинамической неоднородностью здоровых людей и что у них существуют все ТК, представляющие собой вариант нормы.
По мнению большинства авторов, изучающих ТК у больных, при ГрТК сердце работает в наименее экономическом режиме и диапазон компенсаторных возможностей этого типа ограничен. При этом типе имеет место высокая активность симпатико-адреналиновой системы (, , 1985). Наоборот, ГТК является наиболее экономичным и сердечно-сосудистая система при этом ТК обладает большим динамическим диапазоном.
Так, при ГрТК адаптация к физической нагрузке идет за счет ино - и хронотропной функций миокарда без подключения механизма Франка-Стерлинга. Что же касается ГТК, то при этом типе во время физической нагрузки подключается механизм Франка-Старлинга, что, несомненно, свидетельствует о более экономичном характере адаптации.
Существует, однако, точка зрения, что именно ГрТК является наиболее экономичным и при нем наблюдается более высокая работоспособность (Цзи-зинский В. В и др., 1984), и если при ГТК во время физической нагрузки и происходит смещение в сторону меньших энергетических затрат, то при этом не достигается тот уровень, который характерен для гипер - и эукинетиче-ского типов.
По данным и со-авт. (1984), толерантность к физической нагрузке не зависит от ТК, однако диапазон резервных возможностей лиц с гиперкинетическим ТК снижен.
Так или иначе, очевидно, что ТК отличаются друг от друга не только количественно, но и качественно. Это значит, что лица с различными ТК обладают различными адаптационными возможностями, используют различные пути адаптации аппарата кровообращения для достижения оптимума и им свойственно различное течение патологических процессов. Кроме того, в настоящее время не подлежит сомнению, что кровообращение у здоровых людей также неоднородно, причем у них встречаются те же ТК, которые имеют место у больных.
Вместе с тем ряд вопросов, касающихся проблем оценки ТК, остается нерешенным. Прежде всего не решен вопрос о происхождении ТК. Нет также ясности в вопросе о распространенности различных ТК у здоровых людей. Данные разных авторов по вопросу о распространенности ТК в популяции существенно различаются. Причинами противоречивости публикаций по этому вопросу является, на наш взгляд, отсутствие общепринятых критериев для оценки ТК, недостаточная точность ряда методов оценки показателей гемодинамики и условность самого понятия «здоровье».
И все же использование подходов об исходной гемодинамической неоднородности здоровых лиц и существование различных ТК имеет огромное значение для решения ряда вопросов спортивной кардиологии. Исследования, проведенные в области спортивной кардиологии за последнее десятилетие ( и др., 1986; , 1987; , 1987, 1991), не только подтвердили существование гемодинамической неоднородности спортсменов и целесообразность выделения ТК, но и выявили существование различия в характере адаптивных сдвигов у спортсменов с различными ТК.
Так, было установлено, что распределение СИ у 65 спортсменов 1-го разряда и различной направленности тренировочного процесса, по данным обследования в состоянии покоя методом возвратного дыхания, варьирует в широких пределах, превышающих 3 л, а коэффициент вариации (KB) СИ по группе в целом составляет 20%, что свидетельствует о гемодинамической неоднородности группы ( и др., 1986).
После формирования трех однородных групп по критерию KB < 10%, обозначенных в дальнейшем как группы спортсменов с ГТК, ЭТК и ГрТК, проведен анализ гемодинамики в покое и при физической нагрузке. Физическая нагрузка выполнялась на велоэргометре в течение 5 мин и дозировалась из расчета 3,3 Вт/кг массы тела.
В табл. 32 и 33 представлены данные о некоторых параметрах гемодинамики в состоянии покоя при различных ТК. Как видно из таблиц, различий в уровне артериального давления между спортсменами с различными ТК нет. Вместе с тем при ГрТК ЧСС больше, а УПСС достоверно ниже, чем при ЭТК и ГТК. Таким образом, очевидно, что в условиях физиологического покоя у спортсменов с ГТК необходимый уровень кровоснабжения поддерживается, прежде всего за счет высокого УПСС, а при ГрТК - за счет увеличения УО.
Это значит, что в зависимости от ТК механизмы поддерживания одинакового уровня однородного показателя (артериальное давление) различны. О существенных различиях механизмов регуляции кровообращения при различных ТК свидетельствуют и полученные нами данные о тесноте связи между величиной УО и ЧСС. Известно, что увеличение УО вызывает реципрокное угнетение автоматизма синусового узла и приводит к уменьшению ЧСС.
Этот механизм, работающий по принципу обратной связи, обеспечивает поддержание МОК на устойчивом уровне. По данным и (1982), у спортсменов эта связь прослеживается лишь на уровне тенденции, так как имеется лишь умеренная теснота корреляции между этими показателями.
Таблица 32
Основные показатели гемодинамики у спортсменов с различными типами кровообращения в покое (М±ш)*
|
Показатель |
Тип кровообращения |
Достоверность различий | ||||
|
гипокинетический |
эукинетический |
гиперкинетический |
I-II |
I-III |
II-III | |
|
АД сист, мм рт. ст. |
116+7,2 |
117+8,6 |
116+7,0 |
- |
- |
- |
|
АД диаст, мм рт. ст. |
79+9,2 |
74+9,8 |
76+9,6 |
- |
- |
- |
|
ЧСС, уд/мин |
58+6,6 |
61+9,0 |
63+7,0 |
- |
- |
- |
|
Ударный объем, мл |
80+11,4 |
91+18,7 |
107+23,6 |
<0,06 |
<0,01 |
<0,10 |
|
Удельное сопротивление |
886,2±47 |
739,4+84 |
561,1+47,8 |
<0,001 |
<0,001 |
<0,001 |
*М - средняя величина; m - отклонение от средней величины.
Анализ величин УО и ЧСС, проведенный с учетом типов кровообращения, позволил установить, что связь между этими показателями появляется при различных ТК не в одинаковой мере. Тесная обратная корреляция между УО и ЧСС имеет место при ЭТК и ГрТК у спортсменов. При ГТК достоверной связи между этими показателями не выявлено.
Следовательно, в состоянии покоя у спортсменов с ГКТ хроноинотропный механизм практически не участвует в обеспечении сердечного выброса, что хорошо согласуется с представлениями об экономизации функции системы кровообращения, особенно выраженной при тренировке выносливости. С другой стороны, тесная связь между УО и ЧСС при ЭТК и ГрТК дает основание рассматривать спортсменов с этими ТК
как недостаточно адаптированных к выполнению работы на выносливость. Продолжая обсуждение вопроса о роли ТК в оценке состояния адаптации аппарата кровообращения к физическим нагрузкам, остановимся на связи ТК и направленности тренировочного процесса.
Среди спортсменов, развивающих преимущественно выносливость, ГТК встречается примерно в трех случаях; среди спортсменов, развивающих преимущественно ловкость и силу, лишь в 6% случаев, а среди спортсменов, развивающих быстроту, ГТК не встретился вовсе ().
Обратное соотношение имеет место при сопоставлении частоты ТК. В то время как среди спортсменов, развивающих выносливость, ТК обнаружен лишь у 11% обследованных, у спортсменов, развивающих быстроту, ГрТК выявлен более чем в половине случаев. Таким образом, направленность тренировочного процесса определенным образом связана с ТК. Это полностью согласуется с представлениями об экономизации функции, формирующейся в качестве «структурного следа» в процессе долговременной адаптации к циклической работе умеренной мощности.
1 Понятно, что в процессе тренировок к выполнению кратковременной работы максимальной мощности, когда к организму спортсмена предъявляются требования постоянно поддерживать аппарат кровообращения в состоянии «повышенной готовности», совершенствуются преимущественно механизмы срочной адаптации.
Это, в свою очередь, приводит к преимущественному включению времени выполнения нагрузки хронотропного механизма обеспечения поддерживания необходимого уровня кровообращения. Однако нельзя обращать внимание на то обстоятельство, что среди спортсменов, развивающих выносливость, все же встречаются лица с ГрТК.
Это дает основание предположить, что формирование того или иного ТК определяется не только характером тренировочного процесса, но и, в известной мере, является генетически детерминированным, точно так же, как генетически детерминированными являются резервы адаптации сердца к гиперфункции. Справедливость такого предложения подтверждается уже установленным фактом существования ТК среди молодых людей, не занимающихся спортом.
Значение уровня спортивного мастерства в формировании ТК может быть проиллюстрировано следующим примером. Среди 37 спортсменов-спринтеров высшего спортивного мастерства, у которых состояние гемодинамики было изучено с использованием ЭхоКГ-метода, в 70% случаев был выявлен ЭТК и лишь 11% - ГрТК. Напомним, что в приведенных выше результатах исследования гемодинамики у спринтеров 1-го разряда ГТК мы не выявили ни в одном случае.
Эти данные дают основание полагать, что постепенно возрастающие динамические нагрузки большой мощности, так же как и нагрузки умеренной и малой мощности, способствуют формированию ГТК. Однако этот наиболее экономичный тип регуляции системы кровообращения формируется у них существенно позже, чем у спортсменов, тренирующих выносливость, т. е. при более высоком уровне спортивного мастерства.
Важные данные, способствующие более глубокому пониманию природы формирования ТК, были получены ЕЛ. Лопухиной (1987). В основу исследования показателей гемодинамики ею был положен метод импендансографии тела.
Границы для распознавания ТК были уточнены при обследовании 71 мужчины и 67 женщин в возрасте от 17 до 22 лет без отклонений в состоянии здоровья. Как видно из табл. 33, пороговые значения СИ для оценки ТК у мужчин заметно выше, чем у женщин.
Таблица 33
Критерии диагностически различных типов кровообращения у юношей и девушек
|
Типы кровообращения |
Мужчины |
Женщины |
|
Гипокинетический |
2,99 л/(мин/м2) |
2,49 л/(мин/м2) |
|
Эукинетический |
3,0-3,9 л/(мин/м2) |
2,5-3,5 л/(мин/м2) |
|
Гиперкинетический |
> 3,91 л/(мин/м2) |
> 3,51 л/(мин/м2) |
Основываясь на приведенных нормативах, было изучено распределение ТК среди спортсменов, тренирующих вьносливость. Как и следовало ожидать, распределение ТК у спортсменов, тренирующих выносливость, резко отличается от такового у нетренированных лиц и сдвинуто в сторону преобладания ГТК. Это убедительно свидетельствует о том, что регулярные, постепенно нарастающие динамические нагрузки способствуют формированию ГТК. Если учесть, что средние значения ЧСС в группах с различным ТК практически одинаковы, то станет ясно, что в формировании ГТК у спортсменов центральная роль принадлежит снижению величины УО.
Другой важный вывод был сделан при анализе состояния здоровья спортсменов с различным ТК. Оказалось, что в группе спортсменов с ГТК на ЭКГ покоя и с аритмиями сердца были выявлены лишь в 7,2%, при ЭТК 1 - в 443%, а при ГрТК - в 54% случаев.
Подтверждение несомненной связи между характеристиками состояния центральной гемодинамики и состояния здоровья спортсменов было получено также при динамических наблюдениях. По данным таких наблюдений, было установлено, что ухудшение состояния спортсмена сопровождалось переходом из гипоТК в эу - или гиперкинетический ТК.
В качестве примера рассмотрим динамику СИ в годичном тренировочном цикле у спортсменагод, бег на средние дистанции). В подготовительном периоде при повторных обследованиях регулярно выявлялись низкие значения СИ, соответствующие ГТК. В конце подготовительного периода спортсмен выполнил норматив мастера спорта. В предсоревновательном периоде значения СИ несколько увеличились, но не выходили за пределы ГТК. В начале соревновательного периода спортсмен удачно выступил в соревнованиях, установив личный рекорд. Однако вскоре появились признаки ДМФП, сопровождающиеся выраженным подъемом СИ до значений, соответствующих ГрТК. Через неделю спортсмен прекратил тренировки из-за остро развившегося ларинготрахеита. По мере выздоровления отмечалось снижение значений СИ и к началу следующего подготовительного периода значения СИ соответствовали верхнему пределу ГТК.
Изложенные данные позволяют прийти к заключению, что оценка ТК, несомненно, имеет большое значение в оценке состояния адаптации аппарата кровообращения. Есть все основания утверждать, что в процессе долговременной адаптации к нагрузкам динамического характера формируется ГТК. Его формирование определяется прежде всего снижением УО, что соответствует классическим представлениям об экономизации функции сердца спортсмена в состоянии покоя.
Не менее важной является необходимость тщательного клинического обследования спортсменов для выявления предпатологических состояний и патологических изменений сердца.
Устойчивая адаптация аппарата кровообращения к статическим нагрузкам
Все сказанное выше об экономизации функции сердца в покое в полной мере относится к спортивным тренировкам лишь той направленности, в которой преобладают динамические нагрузки, и прежде всего тренировки с преимуществом на выносливость. При преобладании статических нагрузок (тренировка силы) признаки экономизации функции выражены слабо, либо вовсе не выявляются.
Экспериментальные исследования и наблюдения за добровольцами позволяют прийти к заключению, что при таких тренировках функциональное состояние синусового узла и характер регуляции водителя ритма существенно не меняется.
Хорошо известно, что в процессе долговременной адаптации к нагрузкам статического характера, в противоположность воздействию динамических нагрузок, прослеживается четкая тенденция к сдвигу систолического и диастолического артериального давления к верхним границам нормы (, , 1969).
В отношении величины УО у штангистов большинство исследователей сходятся во мнении, что среднее значение УО у штангистов и лиц, не занимающихся спортом, практически не отличается ( и др.; 1980; , 1983; Huston Т. et al., 1985).
Очевидно, что интегральный показатель функции аппарата кровообращения - СИ - в состоянии покоя у штангистов также сохраняется на уровне, свойственном нетренированным лицам. Это подтверждает проведенное нами исследование ТК у лиц с различной направленностью тренировочного процесса, показавшее, что среди тренирующихся преимущественно на развитие силы, преобладают спортсмены с эу-и ГрТК (94% случаев).
Все вышеизложенное свидетельствует о том, что статические нагрузки не способствуют совершенствованию и экономизации функции аппарата кровообращения в состоянии покоя. Об этом же свидетельствуют и изложенные выше данные о физиологии мышечной деятельности, согласно которым, при мышечной работе статического характера не меняется VO2 и артериовенозная разница. Тренировки статического характера сопровождаются увеличением нагрузки на сердце дополнительным сопротивлением, а значит, увеличением напряжения миокарда. Такой тип гиперфункции в первую очередь активирует пластические процессы и синтез белков миокардиоцитов и в конечном счете приводит к увеличению толщины сердечной мышцы.
На основании упомянутых ЭхоКГ и экспериментальных данных очевидно, что при тренировках на развитие выносливости прежде всего включаются механизмы, ответственные за расслабление сердечной мышцы, т. е. механизмы транспорта Са2+ (, 1978). Позднее на базе более полной релаксации развивается тоногенная дилатация сердца и лишь при очень больших объемах тренировочных нагрузок к дилатации присоединяется гипертрофия миокарда (, , 1982).
В свете изложенного заслуживает внимания исследование , проведенное им совместно с и (1978). В этом исследовании были сопоставлены морфометрические характеристики сердца, полученные с помощью ЭхоКГ у нетренированных лиц и у спортсменов-лыжников перворазрядников и мастеров спорта. Спортсмены были разделены на две группы - со средней (1-я группа) и высокой (2-я группа) тренированностью. Показатели морфометрии и гемодинамики исследовались в состоянии покоя и при ступенчато возрастающей физической нагрузке динамического характера.
Естественно, спортсмены обеих групп продемонстрировали более широкий уровень адаптации аппарата кровообращения к физическим нагрузкам, чем нетренированные. Однако особенно важно то, что между группой нетренированных лиц и спортсменами со средним уровнем тренированности не было выявлено достоверных различий ни в величине КДО, ни в величине ММЛЖ, в то время как у высокотренированных спортсменов эти показатели были достоверно выше.
При этом важно обратить внимание, что масса миокарда и размеры левого желудочка у значительной части спортсменов не выходили за пределы колебаний среднестатистических показателей, рассчитанных для нетренированных лиц.
Из этих данных вытекают два важных вывода.
Во-первых, достижение достаточно высоких спортивных результатов возможно и без развития выраженной гипертрофии миокарда.
Во-вторых, среднестатистические показатели объемов камер и массы миокарда имеют весьма офаниченное значение в оценке индивидуальных данных о состоянии адаптации сердца к физическим нафузкам.
Именно поэтому представляется чрезвычайно важным использовать для оценки состояния адаптации сердца к нафузкам показатель соотношения величин КДО/ММЛЖ (Земцовский ЭД, 1979; Gaash W. et al., 1979) или обратного отношения ММЛЖ/КДО (Си-луянова В. А. и др., 1980).
Физиологический смысл показателя КДО/ММЛЖ заключается в том, что он позволяет определить путь адаптации сердца к гиперфункции. В норме и при рациональной адаптации сердца к нагрузкам величина отношения КДО/ ММЛЖ близка к 1,0.
При преимущественном включении релаксационных механизмов, увеличении растяжимости миокарда и дилатации полостей величина КДО/ММЛЖ превышает 1,0. Напротив, преобладание пластических процессов и увеличение массы миокарда будет сопровождаться снижением этого показателя.
На основе изложенных ЭхоКГ-данных об адаптационных сдвигах, развивающихся в ответ на физические нагрузки динамического и статического характера, следует рассмотреть возможные пути адаптации сердца при тренировке выносливости и силы.
Изучению адаптационных сдвигов аппарата кровообращения, развивающихся в ответ на регулярные нафузки статического характера, спортивная кардиология уделяет существенно меньше внимания, чем анализу воздействия динамических нафузок. Между тем статические нагрузки широко используются для развития силовых качеств во многих видах спорта (гимнастика, бокс, борьба и др.). Однако в большинстве из них в тренировочном процессе широко используются и динамические нагрузки.
J. Morganroth и соавт (1975), обследовав борцов, нашел у них достоверное увеличение ММЛЖ по сравнению с нетренированными лицами при практически неизменных размерах левого желудочка. Напротив, (1980) обнаружила у борцов существенное увеличение КДО, что, по-видимому, отражает большую роль нафузок динамического характера в тренировочном процессе у спортсменов этого вида спорта.
ЭхоКГ-исследования, проведенные в динамике у лиц, регулярно тренирующихся в статическом режиме, существенно дополнили представления о закономерностях долговременной адаптации сердца к мышечной работе такого характера. Так, Chkanakis и Rhickson (1980) доказали, что у начинающих спортсменов после 10-недельной тренировки с применением статических нагрузок достоверно увеличивается ММЛЖ без изменения КДО.
И все же экспериментальные исследования и (1980), и ряда других авторов позволяют утверждать, что тренировки на развитие силы сопровождаются заметной гипертрофией миокарда без изменений размеров сердца и основных показателей центральной гемодинамики.
Все вышеизложенное дает основание считать, что регулярные тренировки статического характера не сопровождаются рациональной перестройкой функции аппарата кровообращения, способствуют формированию наклонности к прессорным реакциям, развитию гипертрофии миокарда и, по всей видимости, увеличению его жесткости.
Нельзя не отметить, что при обсуждении проблемы адаптации аппарата кровообращения к нагрузкам статического характера всегда как бы «за кадром» остаются вопросы приема анаболических стероидов. Возможность их неблагоприятного воздействия на сердечно-сосудистую систему следует всегда учитывать при анализе и оценке адаптации и ее нарушений у представителей силовых видов спорта.
8.5.4. Сосудистая система на стадии устойчивой адаптации к физическим нагрузкам
Изменения регуляции системного кровообращения под влиянием физических нагрузок динамического характера полностью укладываются в известные и обсуждавшиеся выше принципы экономизации функции систем в покое и при малых нагрузках и максимальной производительности при выполнении предельных нагрузок.
(1936) отмечал отчетливое снижение артериального давления у спортсменов, которое, однако, не выходило за пределы нижних границ нормы. Позднее эти наблюдения были многократно подтверждены многими исследователями (, , 1969; , 1975; , , 1982).
Влияние систематических тренировок на уровень артериального давления в покое было подробно изучено и (1969). Они доказали, что снижение артериального давления у спортсменов, тренирующих выносливость, встречается тем чаще, чем выше уровень спортивного мастерства, стаж спортивных тренировок, их объем и интенсивность. Последнее обстоятельство подтверждается ростом ги-потензии от подготовительного к соревновательному периоду.
Таким образом, можно утверждать, что регулярные тренировки динамического характера сопровождаются артериальной гипотензией, в основе развития которой лежат адаптивные изменения артериальной сосудистой системы.
Действительно, трудно себе представить увеличение производительности спортивного сердца без увеличения гидравлической проводимости сосудов большого круга кровообращения (Blomgvist С, Saltin В., 1983).
Другим проявлением экономизации функции аппарата кровообращения у спортсменов являются адаптивные изменения скорости кровотока, которая существенно снижается у спортсменов по мере роста тренированности. Это, в свою очередь, создает благоприятные условия для максимального извлечения кислорода из крови в ткани (, 1974).
Кроме того, в процессе адаптации к физическим нагрузкам динамического характера увеличивается растяжимость артерий, снижается их упругое сопротивление и в конечном счете увеличивается емкость артериального русла. Таким образом, снижение констрикторного тонуса сосудов облегчает движение крови и способствует снижению энергетических затрат сердца.
Снижение тонуса стенок артерий, возникающее под воздействием регулярных тренировок, прежде всего на выносливость, проявляется уменьшением скорости распространения пульсовой волны (СРПВ). Интенсивность кровотока через конечности у этих спортсменов также снижена. Показано, что при стандартной физической нагрузке приток крови к работающим мышцам спортсменов меньше, чем у нетренированных лиц (, 1984).
Все эти данные подтверждают представление об экономизации функции сосудистой системы в состоянии покоя. Механизмы описанных выше изменений сосудистого тонуса при систематических тренировках в настоящее время не вполне ясны. Трудно допустить, что первоосновой снижения тонуса сосудов в состоянии покоя у спортсменов является снижение метаболической активности мышечной ткани. Этому противоречит выявляемое у спортсменов существенное повышение артериовенознои разницы по кислороду по сравнению с нетренированными лицами (, 1971; Ekblom В. et al., 1968).
Эти данные скорее указывают, что при систематических тренировках увеличивается способность мышц использовать кислород. По современным представлениям, в совершенствовании регуляции сосудов резистивного типа участвуют три вида механизмов: гуморальный, местный и рефлекторный (, 1984).
Хотя гуморальные механизмы повышения сосудистого тонуса, несомненно, принимают участие в реакции артерий на нагрузку, их роль в регуляции сосудистого тонуса не является ведущей. В ряде исследований выявлено, что регулярные тренировки динамического характера существенно снижают уровень катехоламинов крови в ответ на тестирующую нагрузку. Это дает основание полагать, что реакцию сосудов определяет не уровень катехоламинов крови, а высокая чувствительность нервных приборов сосудистой стенки.
Местные сосудистые реакции также активно участвуют в регуляции кровотока, но центральное место в регуляции сосудистого тонуса в состоянии покоя принадлежит нервно-рефлекторным механизмам регуляции.
Результаты исследований В. Saltin и соавт. (1977) свидетельствуют, что мобилизация функции сердечно-сосудистой системы при физических нагрузках осуществляется рефлекторно при помощи сигналов, исходящих из рецепторов работающих мышц. Эти рефлекторные реакции претерпевают существенные изменения под воздействием систематических физических нагрузок. Авторы высказывают вполне обоснованное предположение, что сердечно-сосудистые рефлексы, совершенствующиеся при регулярных тренировках, формируются благодаря возбуждению хеморецепторов скелетных мышц.
В заключение следует подчеркнуть, что ведущую роль в изменении сосудистых реакций под влиянием систематических физических нагрузок играют рефлекторные механизмы, поскольку только они способны обеспечить тонкое взаимодействие различных систем жизнеобеспечения и точную регуляцию регионарного кровотока в различных областях.
При физических нагрузках статического характера, описанных выше, адаптационных изменений сосудистого тонуса не происходит. Напротив, при тренировках, направленных на развитие силы, интенсивность кровотока в состоянии покоя повышается (, 1984). У штангистов, как известно, отмечается наклонность к повышению артериального давления (, 1958; , , 1969; , 1971).
считал улучшение капиллярного кровотока в мышцах главным фактором, обеспечивающим лучшее использование кислорода. Что касается сердечной мышцы, то увеличение капиллярного кровотока, по мнению , является непременным условием успешной адаптации к физическим нагрузкам. Сегодня факт увеличения пропускной способности коронарного русла и его емкости в результате адаптации к физическим нагрузкам полностью подтвержден и не вызывает сомнений ( 1986).
8.5.5. Нейрогуморальная регуляция
В процессе адаптации к физическим нагрузкам происходит перестройка всех звеньев нейрогуморальной регуляции аппарата кровообращения. Центральные механизмы регуляции обеспечивают координацию деятельности сердца и сосудов с функцией других органов и систем и в конечном счете с потребностями организма в целом. Участие в регуляции кровообращения принимают структуры на всех уровнях центральной нервной системы (ЦНС).
Экономизация функции аппарата кровообращения в покое и при нагрузке обеспечивается самим формированием и совершенствованием двигательных навыков, которые немыслимы без активного участия ЦНС. По (1969), формирование двигательных навыков проходит три стадии:
1-я стадия характеризуется иррадиацией нервных процессов, генерализацией ответных реакций и вовлечением «лишних» мышц;
2-я стадия характеризуется формированием стереотипных движений;
3-я стадия характеризуется развитием высокой степени координации и автоматизации движений.
Вполне понятно, что экономичное функционирование двигательного аппарата обеспечивает экономизацию функции аппарата кровообращения. Такая экономизация в условиях покоя характеризуется возрастанием роли автономного контура регуляции (Баевский P. M., 1979). Последнее проявляется на уровне вегетативной регуляции ритма сердца брадикардией и увеличением амплитуды дыхательных волн.
Роль ЦНС в обеспечении максимальной производительности аппарата кровообращения особенно отчетливо проявляется в предстартовых состояниях, когда в ответ на действие ситуационного раздражителя развиваются преднаг-рузочные изменения деятельности сердца, целью которых является подготовка организма к выполнению тяжелых или ответственных упражнений (, 1939).
Очевидно, что участие ЦНС в регуляции не ограничивается влиянием на сердце. Есть основание считать, что влияние ЦНС сказывается особо на сосудистой части аппарата кровообращения и других органах и системах, прежде всего на системе дыхания (, 1973).
Периферические механизмы нервной регуляции аппарата кровообращения реализуются через симпатический и парасимпатический отделы вегетативной нервной системы.
Адаптационная перестройка вегетативной регуляции приводит к тому, что в состоянии покоя снижается влияние на сердце обоих отделов вегетативной нервной системы. Однако, по мнению большинства исследователей, при этом имеет место относительное преобладание холинергических влияний (, 1971; Колчин СП., 1975; On Y., Horvath S, 1972).
Экономизация функции сердца в покое и при умеренных нагрузках достигается у спортсменов уменьшением степени активизации симпатоадреналовой системы по сравнению с нетренированными лицами. Достижение необходимого эффекта при этом обеспечивается благодаря повышению плотности адренергических нервных окончаний путем врастания между клетками новых симпатических волокон (Unge G. et al., 1973).
Изменения нейрогуморальной регуляции в процессе адаптации сводится к формированию устойчивых условно-рефлекторных связей и двигательных навыков. В сердце увеличивается мощность адренергических механизмов регуляции, что позволяет экономнее, с меньшей активацией симпатоадреналовой системы и меньшим количеством катехоламинов, мобилизовать его сократительную функцию.
Все сказанное в полной мере относится к аппарату кровообращения, адаптированному к динамическим нагрузкам. Что же касается регулярных нагрузок статического характера, то существенных сдвигов нейрогуморальной регуляции, направленных на экономизацию функции аппарата кровообращения в состоянии покоя, у них не наблюдается. Во всяком случае, как уже было сказано, по показателям вегетативной регуляции ритма и значениям ЧСС и УО штангисты при обследовании их в состоянии покоя существенно не отличаются от нетренированных лиц.
Экономизация функции аппарата кровообращения, обеспечиваемая регуляторными механизмами, выявляется у штангистов только при проведении специфических функциональных проб, таких, как, например, проба с натуживанием. При такой пробе у них по сравнению с нетренированными людьми оказались менее выраженными вазоконстрикторные эффекты, был меньшим подъем артериального давления, увеличение ЧСС, отмечалось более существенное падение УО и МОК (, 1984).
Последнее обстоятельство наиболее важно для понимания механизмов долговременной адаптации, совершенствующихся при тренировке такой направленности. Меньшее увеличение ЧСС, большее падение УО и соответственно более выраженное снижение МОК следует рассматривать как свидетельство совершенствования и увеличения мощности анаэробных путей энергопродукции.
Что же касается динамических нагрузок, то возможности их выполнения у штангистов не отличаются от таковых у нетренированных лиц. Так, по данным и соавт. (1974), по тесту PWC=170 гимнасты и штангисты не отличались от нетренированных лиц, а по данным (1970), утомление у них при динамических нагрузках развивалось даже быстрее, чем у нетренированных.
Все сказанное полностью согласуется с принципом преимущественного структурного обеспечения систем, доминирующих в процессе адаптации (, 1986). Этот принцип подразумевает формирование системы, обеспечивающей успешное выполнение физической нагрузки данной направленности в ущерб возможностям выполнения физических нагрузок иного характера.
Таким образом, преимуществами адаптированного сердца обладает сердце лиц, тренированных к выполнению физических нагрузок динамического характера.
8.5.6. Реакция адаптированного сердца на максимальную нагрузку
Максимальная производительность при выполнении предельных нагрузок - таков второй принцип организации функции аппарата кровообращения на стадии устойчивой адаптации к нагрузкам динамического характера (табл. 34).
Здесь же приведем ЭхоКГ-данные для того, чтобы подчеркнуть, что при развитии адаптации по рациональному пути увеличение ММЛЖ идет параллельно с ростом КДО.
Второе обстоятельство, вытекающее из представленных здесь данных, состоит в том, что средние значения ММЛЖ и КДО, хотя и существенно выше у спортсменов, чем у нетренированных лиц, все же не выходят за пределы, обычно принимаемые за верхний порог допустимых колебаний.
Это значит, что у многих спортсменов, находящихся в состоянии устойчивой адаптации к нагрузкам, значения КДО и ММЛЖ не выходят за пределы нормы. Иными словами, адаптированное сердце при небольшой степени выраженности гипертрофии, нередко не определяемой без динамических ЭхоКГ-наблюдений, способно существенно увеличивать функциональные резервы. В связи с этим уместно напомнить слова о роли гипертрофии миокарда в адаптации к гиперфункции: «Громадные преимущества, которыми обладает адаптированное сердце, нельзя объяснить простым изменением массы миокарда».
Таблица 34
Показатели морфометрии сердца и функции сердечно-сосудистой системы в покое и при максимальной физической нагрузке у спортсменов и нетренированных лиц*
|
Показатель |
Нетренированные лица |
Спортсмены | ||
|
Покой |
Нагрузка |
Покой |
Нагрузка | |
|
Масса миокарда левого желудочка, М+а, г |
125+24 |
161 ±29 | ||
|
Конечно-диастолический объем, М±ш, мл |
123+20 |
154 ±35 | ||
|
Частота сердечных сокращений, уд/мин |
68 |
170-180 |
55 |
220-240 |
|
Артериальное давление, мм. рт. ст.: - систолическое – среднее |
120 90 |
170- |
100-115 80-85 |
180- |
|
Ударный объем левого желудочка, мл |
70-90 |
100-125 |
70-95 |
140-190 |
|
Минутный объем сердца, л/мин |
5 |
16-20 |
4-5 |
25-35 |
|
Работа сердца, кгм/мин |
5,8 |
21,0 |
6,0 |
28,5 |
|
ИФС напряжения миокарда, мм рт. ст./Смин - г) |
70,1 |
252 |
44,2 |
152 |
|
Критерий эффективности работы сердца, кгм/мм рт. ст. / мин 10 |
6,5 |
6,6 |
8,3 |
10,0 |
* Показатели эффективности сердца, заимствованные из работы и соавт. (1978), получены при выполнении испытуемыми нагрузки 1200 кгм/мин в течение 3 мин.
Увеличение функциональных резервов адаптированного сердца, как видно из табл. 35, проявляется более выраженным, чем у нетренированных, увеличением ЧСС, подъемом артериального давления и, что особенно важно, почти 2-кратным увеличением ударного объема крови.
Эти сдвиги обеспечивают существенное, по сравнению с нетренированными, увеличение МОК, работы сердца и потребления кислорода в единицу времени.
На оценке различной способности аппарата кровообращения к увеличению МОК у тренированных и нетренированных лиц следует остановиться подробнее. Из табл. 34 видно, что сердце нетренированного человека в ответ на максимальную нагрузку способно увеличить МОК в 3-4 раза. Это увеличение достигается за счет увеличения ЧСС в 2-2,5 раза и возрастании УО на 30-50%. Физиологическое спортивное сердце способно обеспечивать увеличение МОК в 5-7 раз по сравнению с уровнем покоя. Такое увеличение обеспечивается приростом ЧСС в 3-4 раза и значительно большим увеличением УО - в 2-2,5 раза.
Различия способностей адаптированного и неадаптированного сердца к выполнению работы вытекают из приведенных в табл. 35 результатов сопоставления показателей эффективности работы сердца, проведенного (1978). Помимо определения внешней работы, автор предложил показатели интенсивности функционирования структур напряжения (ИФСн), рассчитываемый как частное от деления ДП на ММЛЖ, и критерий эффективности (КЭ) - отношение величины внешней работы к ДП.
Из таблицы видно, что величины ИФСН и КЭ у спортсменов и неспортсменов существенно различаются, что особенно заметно при выполнении большой физической нагрузки.
Величина ИФСн у спортсменов оказалась существенно ниже, а КЭ выше, чем у нетренированных лиц, что служит убедительным подтверждением экономизации функции сердца при тренировках динамического характера.
Все приведенные данные свидетельствуют о том, что максимальная мощность и эффективность работы адаптированного сердца обеспечивается за счет умеренных изменений структуры - тоногенная дилатация и гипертрофия - и, что самое главное, за счет совершенствования функции аппарата кровообращения, проявляющегося резким увеличением способности миокарда к выполнению механической работы.
Однако существуют широкие индивидуальные различия путей адаптации аппарата кровообращения к нагрузкам, проявляющиеся значительными колебаниями морфометрических характеристик адаптированного сердца и гемодинамических ответов на нагрузку.
В частности, и (1982) описали 3 типа реакций УО на физическую нагрузку:
- при 1-м типе, который авторы считают оптимальным, наблюдается быстрый рост УО от исходного до максимального уровня;
- при 2-м типе реакции отмечается медленное нарастание УО в процессе выполнения нагрузки;
- при 3-м типе - временное увеличение УО сменяется постепенным его снижением.
При выполнении нагрузок в горизонтальном положении последняя реакция может наблюдаться и в норме. При вертикальном положении тела 3-й тип реакции следует, по мнению авторов, расценивать как неблагоприятный.
Исследования последних лет показали, что реакция аппарата кровообращения на нагрузку может быть в известной мере прогнозирована, исходя из результатов обследования в условиях покоя, если учитывать тип кровообращения. В упомянутом ранее исследовании и соавт. (1986) спортсмены с различными ТК выполняли дозированную нагрузку на велоэргометре из расчета 3,3 Вт/кг в течение 5 мин. Динамика СИ при пробе с физической нагрузкой в группах спортсменов с разными ТК. 5-минутная одноступенчатая нагрузка выполнялась на велоэргометре и дозировалась из расчета 1 Вт/кг массы тела. Видно, что у спортсменов с исходно выраженной экономизацией функции в состоянии покоя с ГТК ответ на стандартную нагрузку также был самый экономичный. При этом величина СИ возросла в 4,1 раза, в то время как при ГрТК гемодинамический ответ на нагрузку был наиболее выражен, а степень увеличения СИ существенно меньшей (в 3,1 раза).
Кроме того, увеличение СИ при нагрузке у спортсменов с исходно различными ТК происходит различными путями.
Как видно из табл. 35, при ГТК и ГрТК значения УО на высоте нагрузки практически одинаковы и достижение необходимого уровня МОК идет у спортсменов с ГрТК по энергетически более расточительному пути - преимущественному приросту ЧСС и артериального давления при недостаточном повышении периферического сопротивления.
Более экономичный режим функционирования системы кровообращения имеет место при ГТК, что подтверждается самыми низкими значениями двойного произведения состояния кровообращения (ДП) у спортсменов этой группы. Напротив, спортсмены с ГрТК имеют наибольшее значение ДП, что подтверждает наибольшую энергетическую стоимость выполняемой работы. Приведенные данные дают основание считать, что выявление ГрТК у спортсменов, развивающих выносливость, следует оценивать как свидетельство напряжения регуляторных систем или нарушения восстановительных процессов после тренировочных нагрузок.
Таблица 35
Основные показатели гемодинамики (М+т) у спортсменов с различными типами кровообращения во время дозированной физической нагрузки
|
Показатель |
Тип кровообращения |
Достоверность различия | ||||
|
гипокинетический |
эукинетический |
гиперкинетический |
1-2 |
1-3 |
2-3 | |
|
АДсист, мм. рт. ст. |
169+10 |
178+25 |
181+16 |
- |
+ |
- |
|
АДдиастол, мм. рт. ст. СТ. |
66 ±17 |
60+18 |
61+13 |
- |
- |
- |
|
ЧСС, уд/мин |
136+19 |
148+16 |
150+12 |
+ |
+ |
- |
|
Ударный объем левого желудочка, мл |
148+23 |
143±22 |
151+25 |
- |
- |
- |
|
Удельное периферическое сопротивление сосудов, усл. ед. |
9,9 ±0,21 |
9,5 ±0,22 |
8,9+0,23 |
- |
+ |
- |
|
Двойное произведение, ЧССхАДсист, 10~г |
230+12 |
263+10 |
271+24 |
+ |
+ |
- |
|
ЧСС Аде, 102 |
Сегодня еще не вполне ясно, можно ли рассматривать ГрТК в качестве одного из возможных проявлений ДМФП, как это предлагают делать некоторые авторы (, , 1977). Однако не подлежит сомнению, что выявление такого ТК у спортсмена, тренирующего выносливость, требует пристального внимания со стороны спортивного врача и проведения углубленного обследования. Остается не изученным вопрос о взаимосвязи ТК, выявляемого спортсменами в состоянии покоя, и типами реакции УО на физическую нагрузку по и (1982). Можно лишь предполагать, что у лиц с ГрТК, как наименее экономичным типом функционирования аппарата кровообращения, чаще наблюдается 2-й или 3-й тип реакции УО. Лишь дальнейшие углубленные исследования ТК у спортсменов будут способствовать решению этого вопроса.
Весьма перспективным направлением в изучении особенностей реакции аппарата кровообращения на нагрузку являются допплерэхокардиография (ДЭ-ХОКГ) и стресс-ДЭХОКГ, позволяющия оценить диастолическую функцию сердца. Первые исследования, выполненные в этом направлении, показывают, что регулярные физические тренировки способствуют включению дополнительного механизма диастолического наполнения, основную роль в котором играет систола предсердий (Ко-зупица Г. С. и др., 1992).
8.5.7. Обратимость адаптации к физическим нагрузкам
Прекращение спортивных тренировок приводит, как известно, к постепенному снижению адаптации к физическим нагрузкам. При этом происходит довольно быстрое исчезновение «системного структурного следа», составляющего основу такой адаптации. Механизм этого явления состоит в том, что прекращение воздействия нагрузок в соответствующих системах, ответственных за адаптацию, приводит к падению синтеза РНК и уменьшению количества полисом, которые ответственны за синтез белка.
В экспериментах, проведенных в лаборатории , было выявлено, что прекращение воздействия адаптационного фактора приводит сначала к снижению синтеза белка (уже к концу третьих суток), а затем к исчезновению гипертрофии (30-е сутки). В клинических условиях после коррекции аортального порока гипертрофия левого желудочка также претерпевала полное обратное развитие (Krayenbuhl, 1977).
Все эти данные свидетельствуют о том, что прекращение физических нагрузок приводит к развитию процесса физиологической деадаптации.
Вопрос об обратной динамике адаптационного процесса в сердечно-сосудистой системе лиц, прекративших спортивные тренировки, стал интенсивно изучаться с появлением ЭхоКГ-метода. Немногочисленные ЭхоКГ-исследования спортсменов, прекративших регулярные тренировки, в целом подтверждают факт обратного развития гипертрофии миокарда.
(1984) у 80 спортсменов старше 36 лет выявила уменьшение массы миокарда левого желудочка при одновременном увеличении его полости. (1990) обнаружил обратное развитие признаков гипертрофии миокарда обоих желудочков, выявив достоверно меньшие величины массы миокарда у ветеранов спорта, по сравнению с действующими спортсменами.
Однако другие данные о динамике параметров сердца после прекращения спортивных тренировок не столь однозначны. Macchi (1987) у 16 футболистов и 7 боксеров в возрасте 40-60 лет, которые в течение 16 лет занимались профессиональным спортом, а затем не менее 10 лет не тренировались, выявил гипертрофию миокарда и дилатацию полости левого желудочка. Масса сердца у бывших спортсменов составила 332+97,3 г, а у лиц того же возраста, не занимавшихся спортом, - 220±27,2 г.
По мнению автора, прекращение тренировок не обеспечивает полного обратного развития адаптационных изменений. Во всяком случае, такие данные в известной мере совпадают с теоретическими построениями , справедливо считающего, что исчезновение адаптационного структурного следа на заключительном этапе идет медленнее, чем вначале (, 1986).
К этому можно добавить, что обратимость структурных адаптационных изменений, видимо, во многом зависит для высших животных от степени выраженности этих изменений и «цены», которую организм «платит» за адаптацию, а также от характера и темпа выхода из условий, формирующих адаптацию.
Zeppilli (1987) считает, что процесс обратного развития структурных изменений полностью обратим, а случаи возникновения концентрической гипертрофии после прекращения тренировок автор расценивает как результат раннего старения или присоединения ИБС или артериальной гипертензии.
Не ставя под сомнение правомерность такого подхода, нам кажется логичным рассматривать изменения, происходящие в организме спортсмена после прекращения интенсивных тренировок, на основе представлений о возможности как физиологической, так и патологической деадаптации, а возникновение вышеупомянутых патологических изменений связывать с нарушениями процесса деадаптации.
|
Из за большого объема эта статья размещена на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |



